Advertisement

Geodesic Shape Retrieval via Optimal Mass Transport

  • Julien Rabin
  • Gabriel Peyré
  • Laurent D. Cohen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6315)

Abstract

This paper presents a new method for 2-D and 3-D shape retrieval based on geodesic signatures. These signatures are high dimensional statistical distributions computed by extracting several features from the set of geodesic distance maps to each point. The resulting high dimensional distributions are matched to perform retrieval using a fast approximate Wasserstein metric. This allows to propose a unifying framework for the compact description of planar shapes and 3-D surfaces.

Keywords

Point Cloud Geodesic Distance Local Descriptor Global Descriptor Shape Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Veltkamp, R.C., Latecki, L.: Properties and performance of shape similarity measures. In: Proc. of Conference on Data Science and Classification (2006)Google Scholar
  2. 2.
    Zhang, D.S., Lu, G.J.: Review of shape representation and description techniques. Pattern Recognition 37, 1–19 (2004)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bustos, B., Keim, D.A., Saupe, D., Schreck, T., Vranić, D.V.: Feature-based similarity search in 3D object databases. ACM Comput. Surv. 37, 345–387 (2005)CrossRefGoogle Scholar
  4. 4.
    Tangelder, J.W.H., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. Multimedia Tools Appl. 39, 441–471 (2008)CrossRefGoogle Scholar
  5. 5.
    Teague, M.: Image analysis via the general theory of moments. Journal of the Optical Society of America 70, 920–930 (1980)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Teh, C.H., Chin, R.T.: On image analysis by the methods of moments. IEEE Trans. Patt. Anal. and Mach. Intell. 10, 496–513 (1988)zbMATHCrossRefGoogle Scholar
  7. 7.
    Liao, S., Pawlak, M.: On image analysis by moments. IEEE Trans. Patt. Anal. and Mach. Intell. 18, 254–266 (1996)CrossRefGoogle Scholar
  8. 8.
    Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed curves. IEEE Transactions on Computer 21, 269–281 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Prokop, R.J., Reeves, A.P.: A survey of moment-based techniques for unoccluded object representation and recognition. CVGIP 54, 438–460 (1992)Google Scholar
  10. 10.
    Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-spectra as fingerprints for shape matching. In: Symposium on Solid and Physical Modeling, pp. 101–106 (2005)Google Scholar
  11. 11.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Transactions on Graphics 21, 807–832 (2002)CrossRefGoogle Scholar
  12. 12.
    Ben Hamza, A., Krim, H.: Geodesic matching of triangulated surfaces. IEEE Trans. Image Proc. 15, 2249–2258 (2006)CrossRefGoogle Scholar
  13. 13.
    Ion, A., Peyré, G., Haxhimusa, Y., Peltier, S., Kropatsch, W., Cohen, L.: Shape matching using the geodesic eccentricity transform - a study. In: Proc. Workshop of the Austrian Association for Pattern Recognition, OCG, pp. 97–104 (2007)Google Scholar
  14. 14.
    Ion, A., Artner, N., Peyré, G., López Mármol, S., Kropatsch, W., Cohen, L.: 3D shape matching by geodesic eccentricity. In: Proc. Workshop on Search in 3D. IEEE, Los Alamitos (2008)Google Scholar
  15. 15.
    Gorelick, L., Galun, M., Sharon, E., Basri, R., Brandt, A.: Shape representation and classification using the Poisson equation. IEEE TPAMI 28, 1991–2005 (2006)Google Scholar
  16. 16.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Patt. Anal. and Mach. Intell. 24, 509–522 (2002)CrossRefGoogle Scholar
  17. 17.
    Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Patt. Anal. and Mach. Intell. 29, 286–299 (2007)CrossRefGoogle Scholar
  18. 18.
    Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Patt. Anal. and Mach. Intell. 21, 433–449 (1999)CrossRefGoogle Scholar
  19. 19.
    Villani, C.: Topics in Optimal Transportation. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
  20. 20.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth Mover’s Distance as a Metric for Image Retrieval. International Journal of Computer Vision 40, 99–121 (2000)zbMATHCrossRefGoogle Scholar
  21. 21.
    Grauman, K., Darrell, T.: Fast contour matching using approximate earth mover’s distance. In: Proc. of IEEE CVPR 2004, pp. I: 220–227 (2004)Google Scholar
  22. 22.
    Ling, H., Okada, K.: An Efficient Earth Mover’s Distance Algorithm for Robust Histogram Comparison. IEEE Trans. PAMI 29, 840–853 (2007)Google Scholar
  23. 23.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. of the National Academy of Sciences 93, 1591–1595 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Tsitsiklis, J.: Efficient Algorithms for Globally Optimal Trajectories. IEEE Trans. on Automatic Control 40, 1528–1538 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Kimmel, R., Sethian, J.: Computing Geodesic Paths on Manifolds. Proc. of the National Academy of Sciences 95, 8431–8435 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Bornemann, F., Rasch, C.: Finite-element discretization of static Hamilton-Jacobi equations based on a local variational principle. Comput. Visual Sci. 9 (2006)Google Scholar
  27. 27.
    Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical Computer Science 38, 293–306 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Peyré, G., Cohen, L.D.: Geodesic remeshing using front propagation. International Journal of Computer Vision 69, 145–156 (2006)CrossRefGoogle Scholar
  29. 29.
    Veltkamp, R.C., Hagedoorn, M.: State of the art in shape matching, pp. 87–119 (2001)Google Scholar
  30. 30.
    Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM, Philadelphia (2009)zbMATHGoogle Scholar
  31. 31.
    Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein Barycenter and its Application to Texture Mixing, http://hal.archives-ouvertes.fr/hal-00476064/en/
  32. 32.
    Bottou, L.: Online algorithms and stochastic approximations. In: Saad, D. (ed.) Online Learning and Neural Networks. Cambridge University Press, Cambridge (1998)Google Scholar
  33. 33.
    Pitié, F., Kokaram, A., Dahyot, R.: Automated colour grading using colour distribution transfer. In: Computer Vision and Image Understanding (2007)Google Scholar
  34. 34.
    Shirdhonkar, S., Jacobs, D.: Approximate Earth Mover’s Distance in linear time. In: Proc. CVPR 2008, pp. 1–8 (2008)Google Scholar
  35. 35.
    McGill 3-D shapes dataset, http://www.cim.mcgill.ca/~shape/benchMark/
  36. 36.
    Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S., Dickinson, S.: Retrieving articulated 3-D models using medial surfaces. Mach. Vision Appl. 19, 261–275 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Julien Rabin
    • 1
  • Gabriel Peyré
    • 1
  • Laurent D. Cohen
    • 1
  1. 1.CEREMADEUniversité Paris-Dauphine 

Personalised recommendations