Advertisement

Shape from Second-Bounce of Light Transport

  • Siying Liu
  • Tian-Tsong Ng
  • Yasuyuki Matsushita
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6312)

Abstract

This paper describes a method to recover scene geometry from the second-bounce of light transport. We show that form factors (up to a scaling ambiguity) can be derived from the second-bounce component of light transport in a Lambertian case. The form factors carry information of the geometric relationship between every pair of scene points, i.e., distance between scene points and relative surface orientations. Modelling the scene as polygonal, we develop a method to recover the scene geometry up to a scaling ambiguity from the form factors by optimization. Unlike other shape-from-intensity methods, our method simultaneously estimates depth and surface normal; therefore, our method can handle discontinuous surfaces as it can avoid surface normal integration. Various simulation and real-world experiments demonstrate the correctness of the proposed theory of shape recovery from light transport.

Keywords

Form Factor Shape Recovery Global Illumination Light Transport Photometric Stereo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

978-3-642-15552-9_21_MOESM1_ESM.pdf (1.2 mb)
Electronic Supplementary Material (1,277 KB)

References

  1. 1.
    Nayar, S., Ikeuchi, K., Kanade, T.: Shape from interreflections. In: Proc. of Int’l Conf. on Computer Vision, pp. 2–11 (1990)Google Scholar
  2. 2.
    Yu, Y., Debevec, P., Malik, J., Hawkins, T.: Inverse global illumination: recovering reflectance models of real scenes from photographs. In: Proc. of ACM SIGGRAPH, pp. 215–224 (1999)Google Scholar
  3. 3.
    Machida, T., Yokoya, N., Takemura, H.: Surface reflectance modeling of real objects with interreflections. In: Proc. of Int’l Conf. on Computer Vision, pp. 170–177 (2003)Google Scholar
  4. 4.
    Seitz, S.M., Matsushita, Y., Kutulakos, K.N.: A theory of inverse light transport. In: Proc. of Int’l Conf. on Computer Vision, pp. 1440–1447 (2005)Google Scholar
  5. 5.
    Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. In: Proc. of ACM SIGGRAPH, pp. 935–944 (2006)Google Scholar
  6. 6.
    Gupta, M., Tian, Y., Narasimhan, S.G., Zhang, L.: (de) focusing on global light transport for active scene recovery. In: Proc. of Computer Vision and Pattern Recognition (2009)Google Scholar
  7. 7.
    Ng, T.T., Pahwa, R.S., Tan, K.H., Bai, J., Quek, T.Q.S.: Radiometric compensation using stratified inverses. In: Proc. of Int’l Conf. on Computer Vision (2009)Google Scholar
  8. 8.
    Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics: Principles and Practice (1990)Google Scholar
  9. 9.
    Goral, C.M., Torrance, K.E., Greenberg, D.P., Battaile, B.: Modelling the interaction of light between diffuse surfaces. Computre Graphics 18, 212–222 (1984)Google Scholar
  10. 10.
    Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proc. of ACM SIGGRAPH, pp. 145–156 (2000)Google Scholar
  11. 11.
    Goesele, M., Lensch, H.P., Lang, J., Fuchs, C., Seidel, H.P.: Disco: acquisition of translucent objects. In: Proc. of ACM SIGGRAPH, pp. 835–844 (2004)Google Scholar
  12. 12.
    Sen, P., Chen, B., Garg, G., Marschner, S., Horowitz, M., Levoy, M., Lensch, H.: Dual photography. In: Proc. of ACM SIGGRAPH, pp. 745–755 (2005)Google Scholar
  13. 13.
    Peers, P., Mahajan, D.K., Lamond, B., Ghosh, A., Matusik, W., Ramamoorthi, R., Debevec, P.: Compressive light transport sensing. ACM Trans. Graph. 28, 1–18 (2009)CrossRefGoogle Scholar
  14. 14.
    Yu, Y., Debevec, P., Malik, J., Hawkins, T.: Inverse global illumination: Recovering reflectance models of real scenes from photographs. In: Proc. of ACM SIGGRAPH, pp. 215–224 (1999)Google Scholar
  15. 15.
    Boyer, K.L., Kak, A.C.: Color-coded structured light for rapid active ranging. IEEE Trans. on Pattern Analysis and Machine Intelligence 9, 14–28 (1987)CrossRefGoogle Scholar
  16. 16.
    Harley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn (2004)Google Scholar
  17. 17.
    Lambert, J.H.: Photometry, or, on the measure and gradations of light, colors, and shade: Translation from the latin of photometria, sive, de mensura et gradibus luminis, colorum et umbrae, 1760. Illuminating Eng. Soc. of North America (2001)Google Scholar
  18. 18.
    Schröder, P., Hanrahan, P.: On the form factor between two polygons. In: Proc. of ACM SIGGRAPH, pp. 163–164 (1993)Google Scholar
  19. 19.
    Kajiya, J.T.: The rendering equation. In: Proc. of ACM SIGGRAPH, pp. 143–150 (1986)Google Scholar
  20. 20.
    Arvo, J., Torrance, K., Smiths, B.: A framework for the analysis of error in global illumination algorithms. In: Proc. of ACM SIGGRAPH, pp. 75–84 (1994)Google Scholar
  21. 21.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Siying Liu
    • 1
  • Tian-Tsong Ng
    • 1
  • Yasuyuki Matsushita
    • 2
  1. 1.Institute for Infocomm ResearchSingapore
  2. 2.Microsoft Research Asia 

Personalised recommendations