Abstract

In two-class problems, the linear combination of the outputs (scores) of an ensemble of classifiers is widely used to attain high performance. In this paper we investigate some techniques aimed at dynamically estimate the coefficients of the linear combination on a pattern per pattern basis. We will show that such a technique allows providing better performance than those of static combination techniques, whose parameters are computed beforehand. The coefficients of the linear combination are dynamically computed according to the Wilcoxon-Mann-Whitney statistic. Reported results on a multi-modal biometric dataset show that the proposed dynamic mechanism allows attaining very low error rates when high level of precision are required.

Keywords

Classifier ensembles two-class classification biometric systems 

References

  1. 1.
    Fawcett, T.: An introduction to ROC Analysis. Pattern Recognition Letters 27(8), 861–874 (2006)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Fiérrez-Aguilar, J., Chen, Y., Ortega-Garcia, J., Jain, A.K.: Incorporating Image Quality in Multi-algorithm Fingerprint Verification. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 213–220. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Fumera, G., Roli, F.: A theoretical and experimental analysis of linear combiners for multiple classifier systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 942–956 (2005)CrossRefGoogle Scholar
  4. 4.
    Hanley, J.A., McNeil, B.J.: The meaning and the use of the area under a receiver operanting charateristic curve. Radiology 143, 29–36 (1982)Google Scholar
  5. 5.
    Huang, J., Ling, C.: Using AUC and Accuracy in Evaluating Learning Algorithms. IEEE Transactions on Knowledge and Data Engineering 17, 299–310 (2005)CrossRefGoogle Scholar
  6. 6.
    Kittler, J., Hatef, M., Duin, R., Matas, J.: On combing classifiers. IEEE Trans. on PAMI 20(3), 226–239 (1998)Google Scholar
  7. 7.
    Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons Inc., Chichester (2004)MATHCrossRefGoogle Scholar
  8. 8.
    Marcialis, G.L., Roli, F.: Fusion of multiple fingerprint matchers by single layer perceptron with class-separation loss function. Pattern Recognition Letters 26, 1830–1839 (2005)CrossRefGoogle Scholar
  9. 9.
    Nandakumar, K., Jain, A., Dass, S.: Quality-based Score Level Fusion in Multibiometric Systems. In: ICPR 2006, pp. 473–476 (2006)Google Scholar
  10. 10.
    Poh, N., Bengio, S.: Improving Fusion with Margin-Derived Confidence In Biometric Authentication Tasks. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 474–483. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Poh, N., Bengio, S.: Database, protocols and tools for evaluating score-level fusion algorithms in biometric authentication. Pattern Recognition 39(2), 223–233 (2006)CrossRefGoogle Scholar
  12. 12.
    Ross, A.A., Nandakumar, K., Jain, A.K.: Handbook of multibiometrics. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Tronci, R., Giacinto, G., Roli, F.: Dynamic Score Combination: A Supervised and Unsupervised Score Combination. In: Perner, P. (ed.) MLDM 2009. LNCS (LNAI), vol. 5632, pp. 163–177. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Tumer, K., Gosh, J.: Linear and order statistics combiners for pattern classification. In: Combining Artificial Neural Nets, pp. 127–162. Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Marrocco, C., Duin, R.P.W., Tortorella, F.: Maximizing the area under the ROC curve by pairwise feature combination. Pattern Recognition 41(6), 1961–1974 (2008)MATHCrossRefGoogle Scholar
  16. 16.
    Bigun, E., Bigun, J., Duc, B., Fischer, S.: Expert conciliation for multi modal person authentication systems by Bayesian statistics. In: Bigün, J., Borgefors, G., Chollet, G. (eds.) AVBPA 1997. LNCS, vol. 1206, pp. 291–300. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Carlo Lobrano
    • 1
  • Roberto Tronci
    • 1
    • 2
  • Giorgio Giacinto
    • 1
  • Fabio Roli
    • 1
  1. 1.DIEE Dept. of Electrical and Electronic EngineeringUniversity of CagliariItaly
  2. 2.Laboratorio Intelligenza d’AmbienteSardegna DistrICTSardegna RicercheItaly

Personalised recommendations