Skip to main content

Numerical Simulation of Nozzle Flow into High Vacuum Using Kinetic and Continuum Approaches

  • Conference paper
New Results in Numerical and Experimental Fluid Mechanics VII

Summary

Laminar nitrogen flow expanding through a conical nozzle into high vacuum is numerically reproduced and compared to available experimental data. As the gas density varies quickly by several orders of magnitude, leading to high rarefaction and thermal non-equilibrium, standard (continuum) CFD tools are not sufficient to accurately model the expanding flow. In the work presented here, the efficiency of Navier-Stokes solvers is to be exploited where applicable, supplying the boundary conditions for a kinetic Direct SimulationMonte Carlo (DSMC) solver to handle the domain of rarefaction and non-equilibrium. The hypersonic character of the flow suggests to attempt a pure downstream coupling. The validity of this approach is to be verified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymus: Technical documentation of the DLR Tau-code. Technical Report IB 123-2004/00, DLR Institut für Aerodynamik und Strömungstechnik Braunschweig, Göttingen (2004)

    Google Scholar 

  2. Laux, M.: Direkte Simulation verdünnter, reagierender Strömungen. PhD thesis, Institut für Raumfahrtsysteme, Universität Stuttgart (1996)

    Google Scholar 

  3. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford (1994)

    Google Scholar 

  4. Boyd, I.D.: Predicting breakdown of the continuum equations under rarefied flow conditions. In: Ketsdever, A.D., Muntz, E.P. (eds.) Rarefied Gas Dynamics: 23rd International Symposium, pp. 899–906. American Institute of Physics (2003)

    Google Scholar 

  5. Garcia, A.L., Alder, B.J.: Generation of the chapman–enskog distribution. Journal of Computational Physics 140, 66–80 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Plähn, K.: Experimentelle Untersuchung und Modellierung von Abgasstrahlen aus Kleintriebwerken in der Kryo-Vakuum-Anlage STG. PhD thesis, Universität Hannover, Forschungsbericht 1999-39 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grabe, M., Boettcher, RD., Fasoulas, S., Hannemann, K. (2010). Numerical Simulation of Nozzle Flow into High Vacuum Using Kinetic and Continuum Approaches. In: Dillmann, A., Heller, G., Klaas, M., Kreplin, HP., Nitsche, W., Schröder, W. (eds) New Results in Numerical and Experimental Fluid Mechanics VII. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14243-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14243-7_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14242-0

  • Online ISBN: 978-3-642-14243-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics