Assessment of the Artificial Habitat in Shrimp Aquaculture Using Environmental Pattern Classification

  • José Juan Carbajal Hernández
  • Luis Pastor Sánchez Fernández
  • Marco Antonio Moreno Ibarra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6134)

Abstract

This paper presents a novel model for assessing the water quality for the artificial habitat in shrimp aquaculture. The physical-chemical variables involved in the artificial habitat are measured and studied for modeling the environment of the ecosystem. A new physical-chemical index (Г) classifies the behavior of the environmental variables, calculating the frequency and the deviations of the measurements based on impact levels. A fuzzy inference system (FIS) is used for establishing a relationship between environmental variables, describing the negative ecological impact of the concentrations reported. The FIS uses a reasoning process for classifying the environmental levels providing a new index, which describes the general status of the water quality (WQI); excellent, good, regular and poor.

Keywords

Artificial intelligence fuzzy inference systems classification water management 

References

  1. 1.
    Casillas, R., Magallón, F., Portillo, G., Osuna, P.: Nutrient mass balances in semi-intensive shrimp ponds from Sonora, Mexico using two feeding strategies: Trays and mechanical dispersal. In: Aquaculture, vol. 258, pp. 289–298. Elsevier, Amsterdam (2006)Google Scholar
  2. 2.
    Martínez, R.: Cultivo de Camarones Pendidos, Principios y Practica. AGT Editor S.A. (Ed.) (1994)Google Scholar
  3. 3.
    Páez, O. F.: Camaronicultura y Medio Ambiente. Instituto de Ciencias del mar y Limnología, UNAM, México, pp. 271–298 (2001)Google Scholar
  4. 4.
    (INE) Instituto Nacional de Ecología: La calidad del agua en los ecosistemas costeros de México (2000)Google Scholar
  5. 5.
    (SEMARNAP), Secretaría de Medio Ambiente, Recursos Naturales y Pesca.: NOM-001-ECOL-1996Google Scholar
  6. 6.
    (CCME) Canadian Council of Ministers of the Environment (Canada), An assessment of the application and testing of the water quality index of the Canadian Council of Ministers of the Environment for selected water bodies in Atlantic Canada. National indicators and reporting office, http://www.ec.gc.ca/soer-ree/N (accessed August 2007)
  7. 7.
    (NSF) National Sanitation Foundation International (2005), http://www.nsf.org (accessed August 2007)
  8. 8.
    Yew-Hu, C.: Water quality requirements and management for marine shrimp culture. In: Proceedings of the Special Session on Shrimp Farming World Aquaculture Society, Baton Rouge, LA USA, pp. 144–156 (1992)Google Scholar
  9. 9.
    Emmanuel, C.: Digital signal processing: a practical approach. Addison-Wesley, Reading (1993)Google Scholar
  10. 10.
    Proakis, J., Manolakis, D.: Tratamiento digital de señales. Pearson Education, Vol. 1(4), Ed. España (2007)Google Scholar
  11. 11.
    Ocampo, W., Ferré, N., Domingo, J., Schuhmacher, M.: Assessing water quality in rivers with fuzzy inference systems: A case study. In: Environment International, vol. 32, pp. 733–742. Elsevier, Amsterdam (2006)Google Scholar
  12. 12.
    Chow, M.-Y.: Methodologies of using neural network and fuzzy logic technologies for motor incipient fault detection. World Scientific, Singapore (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • José Juan Carbajal Hernández
    • 1
  • Luis Pastor Sánchez Fernández
    • 1
  • Marco Antonio Moreno Ibarra
    • 1
  1. 1.Centre of Computer ResearchNational Polytechnic InstituteMéxicoMéxico

Personalised recommendations