Advertisement

P

  • Axel M. Gressner
  • Torsten Arndt
Chapter
  • 7.2k Downloads

Literatur

  1. Scharpé S, Iliano L (1987) Two Indirect Tests of Exocrine Pancreatic Function Evaluated. Clin Chem 33:5-12PubMedGoogle Scholar
  2. Walkowiak J, Nousia-Arvanitakis S, Henker J et al (2005) Indirect Pancreatic Function Tests in Children. J Pediatr Gastr Nutr 40:107-114CrossRefGoogle Scholar
  3. Paigen K, Pacholec F, Levy HL (1982) A new method of screening for inherited disorders of galactose metabolism. J Lab Clin Med 99:895-907PubMedGoogle Scholar
  4. Schweitzer-Krantz S (2003) Early diagnosis of inherited metabolic disorders towards improving outcome: the controversial issue of galactosemia. Eur J Pediatr 162:S50–53CrossRefGoogle Scholar
  5. Stryer L (1990) Biochemie. Spektrum der Wissenschaft Verlagsgesellschaft, HeidelbergGoogle Scholar
  6. Wiesmüller GA, Henne A, Leng G (1995) Metalle/Palladium. In: Wichmann HE, Schlipköter HW, Fülgraff G (Hrsg) Handbuch der Umweltmedizin. ecomed Verlagsgesellschaft, Landsberg/Lech, VI-3Google Scholar
  7. Lawson N, Chesner I (1994) Tests of exocrine pancreatic function. Ann Clin Biochem 31:305-314PubMedGoogle Scholar
  8. Mc Cormick DB, Klee GG (2001) Tietz Fundamentals of Clinical Chemistry. 5th edn. WB Saunders, PhiladelphiaGoogle Scholar
  9. Bässler KH, Golly I, Loew D et al (2002) Vitaminlexikon. 3. Aufl. Urban und Fischer, MünchenGoogle Scholar
  10. Westermeier R (2004) Elektrophorese-Praktikum. VCH, WeinheimGoogle Scholar
  11. Diagnostica MERCK (1986) Hämatologische Labormethoden. 4. Aufl. GIT Verlag, Darmstadt, S 27-28Google Scholar
  12. Binder T, Diem H, Fuchs R et al (2012) Pappenheim-Färbung: Beschreibung einer hämatologischen Standardfärbung – Geschichte, Chemie, Durchführung, Artefakte und Problemlösungen. J Lab Med 36: 293-309Google Scholar
  13. Koeppen KM, Heller S (1991) Differentialblutbild (panoptische Färbung). In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 174Google Scholar
  14. König H, Hallbach J (2009) Paracetamol. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 203-207Google Scholar
  15. Rumack BH, Peterson RG (1978) Acetaminophen overdosage: incidence, diagnosis, and management in 416 patients. Pediatrics 62: Part 2 (Suppl.) 898-903Google Scholar
  16. Collins P, Chanock RM, McIntosh K (1996) Parainfluenza viruses. In: Fields Virology, 3. Aufl. Lippincott-Raven, S 1205-1241Google Scholar
  17. Wilks D, Farrington M, Rubenstein D (2003) (Hrsg) The infectious disease manual. Blackwell, 2. Aufl. S 346Google Scholar
  18. Strachan T, Read AP (1996) Molekulare Humangenetik. Spektrum Akademischer Verlag GmbH HeidelbergGoogle Scholar
  19. Wedler G (2004) Lehrbuch der Physikalischen Chemie. 5. Aufl. Wiley-VCH, WeinheimGoogle Scholar
  20. Hollemann-Wiberg (1995) Lehrbuch der Anorganischen Chemie. 101. Aufl. W. de Gruyter, BerlinGoogle Scholar
  21. Rasch D (1988) Biometrisches Wörterbuch. Verlag Harri Deutsch, Frankfurt am MainGoogle Scholar
  22. Begemann H, Begemann M (1997) Praktische Hämatologie, 10. Aufl. Georg Thieme Verlag, Stuttgart, S 149Google Scholar
  23. Haagen L et al (1992) A new automated method for phenotyping arylesterase (EC 3.1.1.2) based upon inhibition of enzymatic hydrolysis of 4-nitrophenyl acetate by phenyl acetate. Eur J Clin Chem Clin Biochem 30:391-395PubMedGoogle Scholar
  24. Xu GY et al (2005) Monitoring the level of serum paraoxonase 1 activity in liver transplantation patients. Hepatobiliary Pancreat Dis Int 4:178-181PubMedGoogle Scholar
  25. Watson AD et al (1995) Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest 96:2882-2891PubMedCrossRefGoogle Scholar
  26. Labor und Diagnose. Indikation und Bewertung von Laborbefunden für die medizinische Diagnostik. 7. Aufl. TH-Books, Frankfurt/Main, S 1052-1065, 1085-1110Google Scholar
  27. Daldrup T, Köppel C (2009) Paraquat. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 582-591Google Scholar
  28. Hart TB, Nevitt A, Whitehead A (1984) A new statistical approach to the prognostic significance of plasma paraquat concentrations. Lancet II, S 1222-1223Google Scholar
  29. Voll R, Schmidt-Gayk H, Wiedeman J et al (1978) Radioimmunoassay for Parathyrin. Characterization of Six Different Antigens and Antisera. J Clin Chem Clin Biochem 16:269-77PubMedGoogle Scholar
  30. Martin KJ, Akhtar I, Gonzalez EA (2004) Parathyroid Hormone: New Assays, New Receptors. Semin Nephrol 24:3-9PubMedCrossRefGoogle Scholar
  31. Cioffi M, Corradino M, Gazzerro P et al (2000) Serum Concentrations of Intact Parathyroid Hormone in Healthy Children. Clin Chem 46:863-864PubMedGoogle Scholar
  32. Sokoll LJ, Wians FHJ, Remaley AT (2004) Rapid Intraoperative Immunoassay of Parathyroid Hormone and Other Hormones: A New Paradigm for Point-of-Care Testing. Clin Chem 50:1126-1135PubMedCrossRefGoogle Scholar
  33. Carter AB, Howanitz PJ (2003) Intraoperative Testing for Parathyroid Hormone: A Comprehensive Review of the Use of the Assay and the Relevant Literature. Arch Pathol Lab Med 127:1424-1442PubMedGoogle Scholar
  34. Leitlinien der Deutschen Gesellschaft für Chirurgie (1999) Therapie des Hyperparathyreoidismus. Grundlagen der Chirurgie G 86, Beilage zu: Mitteilungen der Dt Ges f Chirurgie, 28. Jg., Nr. 4, StuttgartGoogle Scholar
  35. Blind E, Raue F (2008) Parathormon-related Protein. In: Thomas L (Hrsg) Labor und Diagnose. 7. Aufl. TH-Books, Frankfurt/Main, S 361-364Google Scholar
  36. Burnett RW, Covington AK, Maas AHJ et al (1989) IFCC Method for Tonometry of Blood. J Clin Chem Clin Biochem 27:403-408PubMedGoogle Scholar
  37. Kapmeyer WH, Pauly H-E, Tuengler P (1988) Automated Nephelometric Immunoassays with Novel Shell/Core Particles. J Clin Lab Anal 2: 79-83CrossRefGoogle Scholar
  38. Litchfield, W J, Craig, A R, Frey, W A, Leflar C C, Looney C E, Luddy M A (1984) Novel shell/core particles for automated turbidimetric immunoassays. Clin Chem 30:1489-1493PubMedGoogle Scholar
  39. Doerr HW, Gerlich WH (2002) Parvo-Viren. In: Medizinische Virologie 1. Aufl. Thieme, Stuttgart, S 343-351Google Scholar
  40. Modrow S, Gärtner B (2006) Parvo-Virus-B19-Infektion in der Schwangerschaft. Deutsch Arztebl: S 2869-2876Google Scholar
  41. Scholz H, Belohradsky BH, Bialek R, Heininger U, Kreth HW, Roos R (2009) Parvo-Virus-B19-Infektionen. In: DGPI-Handbuch. 5. Aufl. Thieme, Stuttgart, S 401-403Google Scholar
  42. Löffler H (1991) Zytochemische Methoden. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 191-192Google Scholar
  43. Briedigkeit L, Müller-Plathe O, Schlebusch H, Ziems J (1998) Patientennahe Laboratoriumsdiagnostik (Point-of-care testing). I. Empfehlungen der Arbeitsgemeinschaft Medizinische Laboratoriumsdiagnostik (AML) zur Einführung und Qualitätssicherung von Verfahren der patientennahen Laboratoriumsdiagnostik (POCT). J Lab Med 22:414-420Google Scholar
  44. Bundesärztekammer (2008) Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen. Dtsch Ärztebl 105:C301–315Google Scholar
  45. Luppa PB, Schlebusch H (2008) POCT – Patientennahe Labordiagnostik. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  46. Guder WG, Narayanan S, Wisser H, Zawta B (2000) Proben zwischen Patient und Labor. 2. Aufl. GIT Verlag, DarmstadtGoogle Scholar
  47. Dybkaer R (1997) Vocabulary for Use in Measurement Procedures and Description of Reference Materials in Laboratory Medicine Eur J Clin Chem Clin Biochem 35:141-173Google Scholar
  48. Szostecki C, Krippner H, Penner E, Bautz FA (1987) Autoimmune sera recognize a 100 kDa nuclear protein antigen (Sp100). Clin Exp Immunol 68:108-116PubMedGoogle Scholar
  49. Züchner D, Sternsdorf T, Szostecki C, Heathcote JE, Cauch-Dudek K, Will H (1997) Prevalence, kinetics, and therapeutic modulation of autoantibodies against Sp100 and promyelocytic leukemia protein in a large cohort of patients with primary biliary cirrhosis. Hepatology 26:1123-1130PubMedGoogle Scholar
  50. Courvalin JC, Worman HJ (1997) Nuclear envelope protein autoantibodies in primary biliary cirrhosis. Review. Semin Liver Dis 17:79-90PubMedCrossRefGoogle Scholar
  51. Muratori P, Muratori L, Ferrari R, Cassini F, Bianchi G, Lenzi M, Rodrigo L, Linares A, Fuentes D, Bianchi FB (2003) Characterization and clinical impact of antinuclear antibodies in primary biliary cirrhosis. Am J Gastroenterol 98:431-437PubMedCrossRefGoogle Scholar
  52. Wichmann I, Montes-Cano MA, Respaldiza N, Alvarez A, Walter K, Franco E, Sanchez-Roman J, Nunez-Roldan A (2003) Clinical significance of anti-multiple nuclear dots/Sp100 autoantibodies. Scand J Gastroenterol 38:996-999PubMedCrossRefGoogle Scholar
  53. Janka C, Selmi C, Gershwin ME, Will H, Sternsdorf T (2005) Small ubiquitin-related modifiers: A novel and independent class of autoantigens in primary biliary cirrhosis. Hepatology Mar 41:609-616PubMedCrossRefGoogle Scholar
  54. Lottspeich F, Zorbas H (1998) Bioanalytik. Spektrum Akademischer Verlag GmbH, Heidelberg, BerlinGoogle Scholar
  55. Unger KK (Hrsg) (1989) Handbuch der HPLC. Teil 1 Leitfaden für Anfänger und Praktiker. GIT Verlag, DarmstadtGoogle Scholar
  56. Koeppen KM, Heller S (1991) Differentialblutbild (panoptische Färbung). In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 180Google Scholar
  57. Feist D (2003) Diagnostik und Therapie des Morbus Wilson. Dt Ärztebl 100:B1213Google Scholar
  58. Binscheck T (2009) Pentazocine. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 252-257Google Scholar
  59. Löffler G, Petrides PE (Hrsg) (2003) Biochemie und Pathobiochemie. 7. Aufl. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  60. Odetti P, Fogarty J, Sell DR et al (1992) Chromatographic quantitation of plasma and erythrocyte pentosidine in diabetic and uremic subjects. Diabetes 41:153-159PubMedCrossRefGoogle Scholar
  61. Bircher J, Sommer W (1999) Klinisch-pharmakologische Datensammlung. 2. Aufl. Wiss. Verlagsgesellschaft, StuttgartGoogle Scholar
  62. Manfredi AA, Rovere-Querini P, Bottazzi B et al (2008) Pentraxins, humoral innate immunity and tissue injury. Curr Opin Immunol; 20:538-544PubMedCrossRefGoogle Scholar
  63. Henderson AR, Tietz NW, Rinker AD (1994) In: Tietz NW, Burtis CA, Ashwood ER (eds) Clinical Chemistry. WB Saunders, Philadelphia, pp 1576-1644Google Scholar
  64. Stanley S, Wynne K, Bloom S (2004) Gastrointestinal Satiety Signals. III. Glucagon-Like Peptide 1, Oxyntomodulin, Peptide YY and Pancreatic Polypeptide. Am J Physiol Gastrointest Liver Physiol 286:G693–697CrossRefGoogle Scholar
  65. Westermeier R, Naven T (2002) Proteomics in Practice: A Laboratory Manual of Proteome Analysis. Wiley-VCH, WeinheimGoogle Scholar
  66. Hesse M, Meier H, Zeeh B (2005) Spektroskopische Methoden in der organischen Chemie. Georg Thieme Verlag, StuttgartGoogle Scholar
  67. Krieger DT (1986) An Overview of Neuropeptides. Res Publ Assoc Res Nerv Ment Dis 64:1-32PubMedGoogle Scholar
  68. Raffael A, Nebe T, Valet G (1994) Grundlagen der Durchflusszytometrie. In: Schmitz G, Rothe G (Hrsg) Durchflusszytometrie in der klinischen Zelldiagnostik. Schattauer Verlag, Stuttgart, S 10Google Scholar
  69. Noonan DM, Fulle AJ, Valente P et al (1991) The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein receptor and the neural cell adhesion molecule. J Biol Chem 266:22939-22947PubMedGoogle Scholar
  70. Costell M, Gustafsson E, Aszodi A et al (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147:1109-1122PubMedCrossRefGoogle Scholar
  71. Wanders RJ, Waterham HR (2005) Peroxisomal disorders I: biochemistry and genetics of peroxisome biogenesis disorders. Clin Genet 67:107-133PubMedCrossRefGoogle Scholar
  72. Haeckel R, Fischer G, Fischer M et al (1984) Vorschläge zur Definition von Zeitbegriffen. Dt Ges Klin Chem Mitteilungen 14:187-192Google Scholar
  73. Geldmacher-von Mallinckrodt M (2009) Pesticides. Introduction. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 559-563Google Scholar
  74. König H (2009) Meperidine. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 228-230Google Scholar
  75. Scharmbeck CM (2002) PFA100®: Globaltest der primären Hämostase? J Lab Med 26:557-562Google Scholar
  76. Theml H, Diem H, Haferlach T (2002) Taschenatlas der Hämatologie. 5. Aufl. Georg Thieme Verlag, Stuttgart, S 68Google Scholar
  77. Peter H-H, Pichler WJ (Hrsg) (1996) Klinische Immunologie, 2. Aufl. Urban & Schwarzenberg, MünchenGoogle Scholar
  78. Rich R (1996) Clinical Immunology Priciples and Practice. Mosby Inc, PhiladelphiaGoogle Scholar
  79. Daunderer M (1995) Lexikon der Pflanzen- und Tiergifte. Nikol Verlagsgesellschaft, HamburgGoogle Scholar
  80. Linder MW, Valdes R (2001) Fundamentals of pharmacogenetics. In: Shaw LM, Kwong TC (eds) The clinical toxicology laboratory. AACC Press, Washington DC, pp 437-454Google Scholar
  81. König H, Hallbach J (2009) Nonopioid analgesics and antirheumatics. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 189-214Google Scholar
  82. Käferstein H, Sticht G (2009) Phencyclidine. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 499-502Google Scholar
  83. Bickel H, Gerrard J, Hickmans EM (1954) The influence of phenylalanine intake on the chemistry and behaviour of the phenylketonuric child. Acta Paediatr 43:64-77PubMedCrossRefGoogle Scholar
  84. Blau N (2006) PKU and BH4. Advances in phenylketonuria and tetrahydrobiopterin. SPS Publications, HeilbronnGoogle Scholar
  85. Fölling A (1934) Über Ausscheidung von Phenylbrenztraubensäure in den Harn als Stoffwechselanomalie in Verbindung mit Imbezillität. Zschr Physiol Chem 227:169-176CrossRefGoogle Scholar
  86. Richtlinien des Bundsausschusses der Ärzte und Krankenkassen über die Früherkennung vonKrankheiten bei Kindern bis zur Vollendung des 6. Lebensjahres (Kinder-Richtlinien) Bundesanzeiger Nr. 26 vom 21.3.2000Google Scholar
  87. Beschluss des Gemeinsamen Bundesausschusses über eine Änderung der Kinder-Richtlinien: Anpassung des erweiterten Neugeborenen-Screenings an das Gendiagnostikgesetz (GenDG) (2011) D Ärzteblatt 108:C796–801Google Scholar
  88. König H, Hallbach J (2009) Nonopioid analgesics and antirheumatics. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 189-214Google Scholar
  89. Baselt RC (2008) Disposition of Toxic Drugs and Chemicals in Man. 8th ed. Biomedical Publications, Foster City, pp 1246-1248Google Scholar
  90. Yonekura T, Kamata S, Wasa M et al (1991) Simultaneous analysis of plasma phenethylamine, phenylethanolamine, tyramine and octopamine in patients with hepatic encephalopathy. Clin Chim Acta 199:91-98PubMedCrossRefGoogle Scholar
  91. Hannak D, Külpmann WR, Hallbach J (2009) Anticonvulsants. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 287-300Google Scholar
  92. Deininger MWN, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96:3343-3356PubMedGoogle Scholar
  93. Kurokawa K, Levine BS, Lee DBN, Massry SG (1985) Physiology of Phosphorus Metabolism and Pathophysiology of Hypophosphatemia and Hyperphosphatemia. In: Arieff AI, DeFronzo RA (eds) Fluid, Elektrolyte and Acid-Base Disorders. Churchill Livingstone, New YorkGoogle Scholar
  94. Soldin SJ, Rifai N, Hicks JMB (1995) Biochemical Basis of Pediatric Disease. 2. edn. AACC Press, PhiladelphiaGoogle Scholar
  95. Hesse A, Jahnen A, Klocke K, Nolde A, Scharrel O (1994) Nachsorge bei Harnsteinpatienten. Gustav-Fischer-Verlag, Jena StuttgartGoogle Scholar
  96. Harris H (1989) The human alkaline phosphatases: what we know and what we don’t know. Clin Chim Acta 186:133-150CrossRefGoogle Scholar
  97. Moss DW (1992) Perspectives in alkaline phosphatase research. Clin Chem 38:2486-2492PubMedGoogle Scholar
  98. Schumann G et al (2011) IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C. Part 9: reference procedure for the measurement of catalytic concentration of alkaline phosphatase. Clin Chem Lab Med 49:1439-1446PubMedCrossRefGoogle Scholar
  99. Thomas L (2005) Saure Phosphatase. In: Thomas L (Hrsg) Labor und Diagnose. 6. Aufl. TH-Books, Frankfurt/Main, S 118-120Google Scholar
  100. Löffler H (1991) Zytochemische Methoden. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 194-195Google Scholar
  101. Walton RJ, Bijvoet OLM (1975) Nomogram for Derivation of Renal Threshold Phosphate Concentration. Lancet II:309-311Google Scholar
  102. Helander A, Zheng Y (2009) Molecular species of the alcohol biomarker phosphatidylethanol in human blood measured by LC-MS. Clin Chem 55:1395-1405PubMedCrossRefGoogle Scholar
  103. Morner E (2008) Hypophosphatasia. Best Pract Res Clin Rheumatol 22:113-127CrossRefGoogle Scholar
  104. Lamerz R, Dati F, Feller AC et al (1998) Tumordiagnostik: Tumormarker bei malignen Erkrankungen. Behringwerke AG, MarburgGoogle Scholar
  105. Büchler M, Malfertheiner P, Schädlich H et al (1989) Role of Phospholipase A2 in Human Acute Pancreatitis. Gastroenterology 97:1521-1526PubMedGoogle Scholar
  106. Six DA, Dennis EA (2000) The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta 1488:1-19PubMedCrossRefGoogle Scholar
  107. Davidson MH, Corson MA, Alberts MJ et al (2008) Consensus panel recommendation for incorporating lipoprotein-associated phospholipase A2 testing into cardiovascular disease risk assessment guidelines. Am J Cardiol 101(suppl):51–57FCrossRefGoogle Scholar
  108. Zalewski A, Nelson JJ, Hegg L, MacPhee C (2006) Lp-PLA2: a new kid on the block. Clin Chem 52:1645-1650PubMedCrossRefGoogle Scholar
  109. Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291-1335PubMedGoogle Scholar
  110. Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281-312PubMedCrossRefGoogle Scholar
  111. Exton JH (2002) Phospholipase D-structure, regulation and function. Rev Physiol Biochem Pharmacol 144:1-94PubMedCrossRefGoogle Scholar
  112. Exton JH (2002) Regulation of phospholipase D. FEBS Lett 531:58-61PubMedCrossRefGoogle Scholar
  113. Huuskonen J, Okkonen VM, Jauhiainen M et al (2001) The impact of phospholipid transfer protein (PLTP) on HDL metabolism. Atherosclerosis 155:269-281PubMedCrossRefGoogle Scholar
  114. Rifai N, Warnick GR, Dominiczak MH (2000) Handbook of Lipoprotein Testing. 2nd edn. AACC Press, Washington DCGoogle Scholar
  115. Latscha HP, Linti GW, Klein HA (2004) Analytische Chemie Chemie-Basiswissen III. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  116. Reem GH (1975) Phosphoribosylpyrophosphate overproduction, a new metabolic abnormality in the Lesch Nyhan Syndrom. Science 190:1098-1099PubMedCrossRefGoogle Scholar
  117. Becker MA, Losmann MJ, Kim M (1987) Mechanisms of accelerated purine nucleotide synthesis in human fibroblasts with superactive phosphoribosylpyrophosphate synthetases. J Biol Chem 262:5596-5602PubMedGoogle Scholar
  118. Rifai N, Warnick GR, Dominiczak MH (2000) Handbook of Lipoprotein Testing. 2nd edn. AACC Press, Washington DCGoogle Scholar
  119. Enzyme Nomenclature (1992) Academic Press, San Diego; und Supplements 1-5 in Eur J Biochem (1994) 223:1-5; Eur J Biochem (1995) 232:1-6; Eur J Biochem (1996) 237:1-5; Eur J Biochem (1997) 250:1-6; Eur J Biochem (1999) 264:610-650Google Scholar
  120. Näser KH, Peschel G (1986) Physikalisch-chemische Meßmethoden. Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  121. IUPAC Compendium of chemical terminology (1997 bzw. 2008) (im Internet frei zugängig unter www.iupac.org/publications/compendium, zuletzt geprüft 13.12.2012)
  122. Inczedy J, Lengyel T, Ure AM (1998) Compendium of Analytical Nomenclature (definitive rules 1997). 3rd edn. Blackwell Science (online frei zugängig unter www.iupac.org/publications/analytical_compendium)
  123. Näser KH, Peschel G (1986) Physikalisch-chemische Meßmethoden. Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  124. Näser KH, Peschel G (1986) Physikalisch-chemische Meßmethoden. Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  125. Maas AHJ, Weisberg HF, Burnett RW et al (1987) Reference Method for pH Measurement in Blood. J Clin Chem Clin Biochem 25:281-289PubMedGoogle Scholar
  126. Soldin SJ, Rifai N, Hicks JMB (1995) Biochemical Basis of Pediatric Disease. 2nd edn. AACC Press, Washington DCGoogle Scholar
  127. Tietz NW (1995) Clinical Guide to Laboratory Tests. 3rd edn. WB Saunders, PhiladelphiaGoogle Scholar
  128. Wanders RJ, Jansen GA, Lloyd MD (2003) Phytanic acid alpha-oxidation, new insights into an old problem: a review. Biochem Biophys Acta 1631:119-135PubMedCrossRefGoogle Scholar
  129. Falbe J, Regitz M (Hrsg) (1991) Römpp Chemie Lexikon. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  130. Ricken A (1915) Die Blätterpilze (Agaricaceae) Deutschlands und der angrenzenden Länder, besonders Österreichs und der Schweiz. Verlag Theodor Oswald Weigel, LeipzigGoogle Scholar
  131. Schläpfer M, Bovens M (2003) Nachweis und quantitative Bestimmung von Psilocin- und Psilocybin in halluzinogenen Pilzen. Toxichem +Krimtech 71/2:158-163Google Scholar
  132. Reinhart WH, Wyss EJ, Arnold D et al (1994) Hereditary sherocytosis with protein band 3 defect in a Swiss kindred. Br J Haematol 86:147-155PubMedCrossRefGoogle Scholar
  133. Plecko B, Hikel C, Korenke GC et al (2005) Pipecolic acid as a diagnostic marker of pyridoxine-dependent epilepsy. Neuropediatrics 36:200-205PubMedCrossRefGoogle Scholar
  134. Vaudry D, Gonzalez BJ, Basille M et al (2000) Pituitary Adenylate Cyclase-Activating Polypeptide and its Receptors: from Structure to Functions. Pharmacol Rev 52:269-324PubMedGoogle Scholar
  135. Guder WG, Nolte J (2009) Das Laborbuch für Klinik und Praxis, 2. Aufl. Elsevier, Urban und Fischer, MünchenGoogle Scholar
  136. Klein HG, Anstee DJ (2005) Mollison’s 11th Edition, Blood Transfusion in Clinical Medicine, a revision of the 10th editition written by Mollison PL, Engelfriet CP, Contreras M, Blackwell Publishing, OxfordGoogle Scholar
  137. American Association of Blood Banks (1999) Technical Manual 13th ed. S. Karger, BaselGoogle Scholar
  138. Reid ME, Lomas-Francis C (2004) The Blood Group Antigen Facts Book. 2. Aufl. Elsevier, New YorkGoogle Scholar
  139. Schmaier AH, McCrae KR (2007) The plasma kallikreinkinin system: its evolution from contact activation. J Thromb Haemost 5:2323-2329PubMedCrossRefGoogle Scholar
  140. Blau N, Duran M, Blaskovics ME et al (eds) (2001) Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd edn. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  141. Montaser A, Golightly DW (eds) (1987) Inductively Coupled Plasmas in Analytical Atomic Spectrometry. VCH, WeinheimGoogle Scholar
  142. Broekaert JAC (2002) Analytical Atomic Spectrometry with Flames and Plasmas. Wiley-VCH, WeinheimGoogle Scholar
  143. Löffler H, Rastetter J (1999) Atlas der klinischen Hämatologie. 5. Aufl. Springer-Verlag, Berlin Heidelberg New York, S 64-65Google Scholar
  144. Bachmann F (2001) Plasminogen-Plasmin Enzym System. In: Colman RW, Hirsh J, Marder VJ (eds) Hemostasis and Thrombosis. Lippincott Wilhelms & Wilkins, Philadelphia, pp 275-320Google Scholar
  145. Bartels M, von Depka M (2003) Das Gerinnungskompendium. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  146. Bachmann F (2001) Plasminogen-Plasmin Enzyme System. In: Colman RW, Hirsh J, Marder VJ (eds) Hemostasis and Thrombosis. Lippincott Williams & Wilkins, Philadelphia, pp 275-320Google Scholar
  147. Löffler H, Rastetter J (1999) Atlas der klinischen Hämatologie. 5. Aufl. Springer-Verlag, Berlin Heidelberg New York, S 288-289Google Scholar
  148. Tangpukdee N, Duangdee C, Wilairatana P, Krudsood S (2009) Malaria diagnosis: A brief review. Korean J Parasitol 47(2):93-102PubMedCrossRefGoogle Scholar
  149. World Health Organization (2009) Malaria. Fact sheet N°94Google Scholar
  150. König KH, Schuster M (1994) Platinum group metals. In:Google Scholar
  151. Seiler HG, Sigel A, Sigel H (eds) Handbook on metals in clinical and analytical chemistry. Marcel Dekker, New York Basel Hong Kong, S 521-530Google Scholar
  152. Fukami MH, Holmsen H, Kowalski MA, Niewiarowski S (2001) Platelet secretion. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN (eds) Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 4th edn. JB Lippincott Co., Phladelphia, pp 561-574Google Scholar
  153. Stamm D, Büttner J (1995) Beurteilung klinisch-chemischer Analysenergebnisse. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3 Aufl. Schattauer Verlag, StuttgartGoogle Scholar
  154. Cassidy A, Chiuve SE, Manson JAE et al (2009) Potential role for plasma placental growth factor in predicting coronary heart disease risk in women. Arterioscler Thromb Vasc Biol 29:134-139PubMedCrossRefGoogle Scholar
  155. Levine RJ, Maynard SE, Qian C et al (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672-683PubMedCrossRefGoogle Scholar
  156. Hafner L, Hoff P (1977) Genetik. Hermann Schroedel Verlag, Hannover Dortmund Darmstadt BerlinGoogle Scholar
  157. Kessler A, Grünert C, Wood WG (1994) The Limitations and Usefulness of CRP and Elastase-Alpha-1-Proteinase Inhibitor Complexes as Analytes in the Diagnosis and Follow-up of Sepsis in Newborns and Adults. Eur J Clin Chem Clin Biochem 32:365-368Google Scholar
  158. Koeppen KM, Heller S (1991) Differentialblutbild (panoptische Färbung). In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 171Google Scholar
  159. Latscha HP, Linti GW, Klein HA (2004) Analytische Chemie Chemie-Basiswissen III. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  160. Westermeier R (1990) Elektrophorese-Praktikum. VCH, WeinheimGoogle Scholar
  161. Lottspeich F, Engels JW (Hrsg) (2012) Bioanalytik, 3. Aufl. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  162. Rifai N, Warnick GR, Dominiczak MH (2000) Handbook of Lipoprotein Testing. 2nd edn. AACC Press, Washington DCGoogle Scholar
  163. Warnick GR, Nauck M, Rifai N (2001) Evolution of methods for measurement of HDL-cholesterol: from ultracentrifugation to homogeneous assays. Clin Chem 47:1579-1596PubMedGoogle Scholar
  164. Sugiuchi H, Uji Y, Okabe H et al (1995) Direct measurement of high-density lipoprotein cholesterol in serum with polyethylene glycol-modified enzymes and sulfated alpha-cyclodextrin. Clin Chem 41:717-723PubMedGoogle Scholar
  165. Rifai N, Warnick GR, Dominiczak MH (2000) Handbook of Lipoprotein Testing. 2nd edn. AACC Press, Washington DCGoogle Scholar
  166. Hafner L, Hoff P (1977) Genetik. Hermann Schroedel Verlag, Hannover Dortmund Darmstadt BerlinGoogle Scholar
  167. Heimpel H, Prümmer O (1991) Bedeutung und Effizienz der Blutzelldiagnostik. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 26Google Scholar
  168. Saiki RK, Scharf SJ, Faloona F et al (1985) Enzymatic Amplification of Beta-Globin Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia. Science 230:1350-1354PubMedCrossRefGoogle Scholar
  169. Lottspeich F, Zorbas H (1998) Bioanalytik. Spektrum Akademischer Verlag, Heidelberg BerlinGoogle Scholar
  170. Begemann H, Begemann M (1997) Praktische Hämatologie. 10. Aufl. Georg Thieme Verlag, Stuttgart, S 117-118Google Scholar
  171. Verhoeven NM, Wamelink MMC, Jakobs C (2008) Polyols. In: Blau N, Duran M, Gibson KM (eds) Laboratory Guide to the Methods in Biochemical Genetics. Springer-Verlag, Berlin Heidelberg New York, pp473–483Google Scholar
  172. Bordi C, Azzoni C, D’Adda T et al (2002) Pancreatic polypeptide-related tumors. Peptides 23:339-348PubMedCrossRefGoogle Scholar
  173. Dohm G (2001) Geschichte der Histopathologie, Springer-Verlag, Heidelberg Berlin New YorkCrossRefGoogle Scholar
  174. Ponfick E (1875) Experimentelle Beiträge zur Lehre von der Transfusion. Arch Path Anat 62:273Google Scholar
  175. Doss M (1998) Porphyrie. In: Thomas L (Hrsg) Labor und Diagnose. 5. Aufl. TH Books, Frankfurt/MainGoogle Scholar
  176. Löffler G, Petrides PE (1997) Biochemie und Pathobiochemie. 5. Aufl. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  177. Anderson PM, Desnick RJ (1982) Porphobilinogen Deaminase: Methods and Principles of the Enzymatic Assay. Enzyme 28:146-157PubMedGoogle Scholar
  178. Gross U, Jacob K, Frank M, Doss MO (1997) Haem Precursors and Porphobilinogen Deaminase in Erythrocytes and Lymphocytes of Patients with Acute Intermittent Porphyria. Cell Mol Biol (Noisy-legrand) 43:29-35Google Scholar
  179. Doss MO (1998) Porphyrie. In: Thomas H (Hrsg) Labor und Diagnose. 5. Aufl. TH Books, Frankfurt/MainGoogle Scholar
  180. Doss MO (2000) Porphyrie. In: Thomas L (Hrsg) Labor und Diagnose. Indikation und Bewertung von Laborbefunden für die Medizinische Diagnostik. TH Books, Frankfurt/Main, S 458-474Google Scholar
  181. Bickers DR, Frank J (2003) The porphyrias. In: Freedberg IM, Eisen AZ, Wolff K et al (eds) Dermatology in General Medicine. 6. Aufl. Mc-Graw Hill, New York, pp 1435-1466Google Scholar
  182. Wisser H, Bertsch T (2009) Aussage und Nutzen von Laborergebnissen. In: Guder WG, Nolte J (Hrsg) Das Laborbuch für Klinik und Praxis. 2. Aufl. Elsevier, Urban und Fischer, München, S 21-38Google Scholar
  183. Latscha HP, Linti GW, Klein HA (2004) Analytische Chemie. Chemie-Basiswissen III. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  184. Näser KH, Peschel G (1986) Physikalisch-chemische Meßmethoden. Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  185. Schüttig R, Meißner D (1993) Die computergestützte potentiometrische Strippinganalyse – eine Möglichkeit zur Spurenelementanalytik Spurenelementanalytik im klinischen Labor. In: Dörner K (Hrsg) Akute und chronische Toxizität von Spurenelementen. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 55-59Google Scholar
  186. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  187. Hutchinson DR, Halliwell RP, Smith MG et al (1981) Serum „prealbumin“ as an index of liver function in human hepatobiliary disease. Clin Chim Acta 114:69-74PubMedCrossRefGoogle Scholar
  188. Guder WG (2009) Die Qualität labormedizinischer Untersuchungen in der präanalytischen und analytischen Phase. In: Guder WG, Nolte J (Hrsg) Das Laborbuch für Klinik und Praxis. 2. Aufl. Elsevier, Urban und Fischer, München, S 1-20Google Scholar
  189. Guder WG, Narayanan S, Wisser H, Zawta B (2009) Diagnostic Samples: From the Patient to the Laboratory. 4th ed. Wiley-Blackwell, WeinheimGoogle Scholar
  190. Bonini P, Plebani M, Ceriotti F, Rubolli F (2002) Errors in Laboratory Medicine. Clin Chem 48:691-698PubMedGoogle Scholar
  191. DIN EN ISO 15189 (2007) Medizinische Laboratorien – Besondere Anforderungen an die Qualität und Kompetenz. Beuth-Verlag, BerlinGoogle Scholar
  192. Bundesärztekammer (2008) Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen. D Arztebl 105:C301–315; www.bundesaerztekammer.de
  193. Rosenson RS et al (2011) HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin Chem 57:392-410PubMedCrossRefGoogle Scholar
  194. Diedrich K,Griesinger G, Hepp H, Hilland U, Kentenich H, Koch HG, Kreß H, Montgomery FU, Nieschlag E, Schulze J, Scriba PC, Wiesing U (2011) Memorandum zur Präimplantationsdiagnostik (PID). Deutsches Ärzteblatt 108:A1701–1708Google Scholar
  195. Kitchens CS (2002) The Contact System. Arch Pathol Lab Med 126:1382-1386PubMedGoogle Scholar
  196. Stockmann W et al (1993) Criteria of practicability. In: Haeckel R et al (eds) Evaluation Methods in Laboratory Medicine. VCH, Weinheim, S 185-201Google Scholar
  197. Thomas L (Hrsg) (2005) Labor und Diagnose. Indikation und Bewertung von Laborbefunden für die medizinische Diagnostik. TH-Books, Frankfurt/MainGoogle Scholar
  198. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  199. Rieder H-J (Hrsg) Lexikon des Arztrechts. Loseblattwerk. CF Müller, HeidelbergGoogle Scholar
  200. Lottspeich F, Zorbas H (Hrsg) (1998) Bioanalytik. Spektrum Akademischer Verlag, Heidelberg, S 75-87Google Scholar
  201. Lottspeich F, Engels JW (Hrsg) (2012) Bioanalytik, 3. Aufl. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  202. Qualitätskontrolle im Medizinischen Laboratorium vonA bis Z – Ein Leitfaden in Schlagworten, 2. Aufl. Behring DiagnostikaGoogle Scholar
  203. Lyrica®. Stand der Information 03/2008. In: FachInfo-Service. Rote Liste Service GmbH, BerlinGoogle Scholar
  204. Berry D, Millington C (2005) Analysis of Pregabaline at Therapeutic Concentrations in Human Plasma/Serum by Reversed-Phase HPLC. Ther Drug Monit 27:451-456PubMedCrossRefGoogle Scholar
  205. Baliff JP, Mooney RA (2003) New Developments in Prenatal Screening for Down Syndrome. Am J Clin Pathol 120(Suppl):14-24Google Scholar
  206. Qin QP, Kokkola S, Lund J et al (2005) Molecular Distinction of Circulation Pregnancy-Associated Plasma Protein A in Myocardial Infarcation and Pregnancy. Clin Chem 51:75-83PubMedCrossRefGoogle Scholar
  207. Nerl C (1993) Normale Zellverteilung im peripheren Blut. In: Begemann H, Rastetter J (Hrsg) Klinische Hämatologie. 4. Aufl. Georg Thieme Verlag, Stuttgart, S 7Google Scholar
  208. Löffler H, Rastetter J (1991) Atlas der Klinischen Hämatologie. 5. Aufl. Springer Verlag Berlin, S 89Google Scholar
  209. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML (2010) Internationales Wörterbuch der Metrologie (VIM) Deutsch-englische Fassung. ISO/IEC-Leitfaden 99:2007. 3. Aufl. Beuth-Verlag, BerlinGoogle Scholar
  210. Medizinische Laboratorien (2007) Besondere Anforderungen an die Qualität und Kompetenz. ISO EN DIN 15189. Beuth-Verlag, BerlinGoogle Scholar
  211. Hannak D, Külpmann WR, Hallbach J (2009) AnticonvulsantsIn: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 287-300Google Scholar
  212. Medizinische Laboratorien (2007) Besondere Anforderungen an die Qualität und Kompetenz. ISO EN DIN 15 189:2003, 3,14. Beuth-Verlag, BerlinGoogle Scholar
  213. Guder WG, Hagemann P, Wisser H, Zawta B (2006) Fokus Patientenprobe. Kompendium Präanalytik CD-Rom. BD HeidelbergGoogle Scholar
  214. Wisser D, van Ackern K, Knoll E, Wisser H, Bertsch T (2003) Blood loss from laboratory tests. Clin Chem 49:1651-1655PubMedCrossRefGoogle Scholar
  215. CLSI (2004) Procedure and devices for the collection of diagnostic capillary blood specimens. Approved Standard. 5th ed. Wayne, PA: Document H4-A5Google Scholar
  216. CLSI (2004) Procedures for the collection of arterial blood specimens. Approved Standard. 4th ed. Wayne, PA: Document H11-A4Google Scholar
  217. CLSI (2007) Procedures for the collection of diagnostic blood specimens by venipuncture. Approved Standard, 6th ed. Wayne, PA: Document H3-A6Google Scholar
  218. Guder WG, Hagemann P, Wisser H, Zawta B (2006) Fokus Patientenprobe, Kompendium Präanalytik CD-Rom. BD, HeidelbergGoogle Scholar
  219. EN/DIN/ISO 6710 (2002) Gefäße zur einmaligen Verwendung für die venöse Blutentnahme beim Menschen. Beuth-Verlag, BerlinGoogle Scholar
  220. Bundesärztekammer (2008) Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen. D Arztebl; 105:C301–315. www.bundesärztekammer.de
  221. Guder WG, da Fonseca-Wollheim F, Heil W, Schmitt Y, Töpfer G, Wisser H, Zawata B (2012) Die Qualität diagnostischer Proben, 7. Aufl. BD, HeidelbergGoogle Scholar
  222. Godolphin W, Bodtker K, Wilson L (1992) Simulation Modelling: A Tool to Help Predict the Impact of Automation in Clinical Laboratories. Lab Robot Autom 4:249-255Google Scholar
  223. Guder WG, Narayanan S, Wisser H, Zawta B (2009) Diagnostic Samples: From the Patient to the Laboratory. 4th ed. Wiley-Blackwell, WeinheimGoogle Scholar
  224. Bock R (2001) Handbuch der analytisch-chemischen Aufschlussmethoden. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  225. König H, Schmoldt A (2009) Antidysrhythmic agents. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 271-285Google Scholar
  226. Meisner M (2002) Pathobiochemistry and Clinical Use of Procalcitonin. Clin Chim Acta 323:17-29PubMedCrossRefGoogle Scholar
  227. Aktories K, Förstermann U, Hofmann FB, Starke K (2005) Allgemeine und spezielle Pharmakologie und Toxikologie. Urban & Fischer, München JenaGoogle Scholar
  228. Theml H, Diem H, Haferlach T (2002) Taschenatlas der Hämatologie, 5. Aufl. Georg Thieme Verlag, Stuttgart, S 30-31Google Scholar
  229. Stieber P, Heinemann V (2008) Sinnvoller Einsatz von Tumormarkern. J Lab Med 2008;32:339-360Google Scholar
  230. Molina R, Holdenrieder S, Auge JM, Stieber P (2010) Diagnostic relevance of circulating biomarkers in patients with lung cancer. Cancer Biomarkers 6: 163-178PubMedGoogle Scholar
  231. Wood P, Groom G, Moore A et al (1985) Progesterone assays: guidelines for the provision of a clinical biochemistry service. Ann Clin Biochem 22(1):1-24 ReviewPubMedGoogle Scholar
  232. Abdulla U, Diver MJ, Hipkin LJ et al (1983) Plasma progesterone levels as an index of ovulation. Br J Obstet Gynaecol 90(6):543-548PubMedCrossRefGoogle Scholar
  233. Levy MJ, Smotrich DB, Widra EA et al (1995) The predictive value of serum progesterone and 17-OH progesterone levels on in vitro fertilization outcome. J Assist Reprod Genet 12(3):161-166PubMedCrossRefGoogle Scholar
  234. Buschhausen-Denker G, Deitenbeck D (Hrsg) (1995) Sicherheit in der Gentechnik, Handbuch für Projektleiter und Mitarbeiter in gentechnischen Anlagen. Ed. Temmen, BremenGoogle Scholar
  235. Wiedemann G, Jonetz-Mentzel L (1993) Establishment of Reference Ranges for Prolactin in Neonates, Infants, Children and Adolescents. Eur J Clin Chem Clin Biochem 31:447-451PubMedGoogle Scholar
  236. Gassler N, Peuschel T, Pankau R (2000) Pediatric Reference Values of Estradiol, Testosterone, Lutropin, Follitropin and Prolactin. Clin Lab 46:553-560PubMedGoogle Scholar
  237. Duran M (2008) Amino acids. In: Blau N, Duran M, Gibson KM (eds) Laboratory Guide to the Methods in Biochemical Genetics, Springer pp53–90Google Scholar
  238. Kuutti-Savolainen ER, Risteli J, Miettinen TA et al (1979) Collagen biosynthesis enzymes in serum and hepatic tissue in liver disease. Eur J Clin Invest 9:89-95PubMedCrossRefGoogle Scholar
  239. Bennett J, Catovsky D, Daniel MT et al (1989) Proposals for the classification of chronic (mature) B and T lymphoid leukaemias. J Clin Pathol 42:567-584PubMedCrossRefGoogle Scholar
  240. Boll I (1991) Knochenmarkzytologie. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 292-293CrossRefGoogle Scholar
  241. Löffler H, Rastetter J (1999) Atlas der klinischen Hämatologie. 5. Aufl. Springer-Verlag, Berlin Heidelberg New York, S 52-54Google Scholar
  242. Boll I (1991) Knochenmark-Zytologie. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 287-290CrossRefGoogle Scholar
  243. McCullough PA, Sandberg KR (2003) Sorting out the evidence on natriuretic peptides. Rev Cardiovasc Med 4(suppl 4):S13–19Google Scholar
  244. Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Engl J Med 339:321-328PubMedCrossRefGoogle Scholar
  245. König H, Schmoldt A (2009) Antidysrhythmic agents. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 271-285Google Scholar
  246. Blau N, Duran M, Blaskovics ME et al (eds) (2001) Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd edn. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  247. Sokoll LJ et al (2010) A prospective, multicenter, National Cancer Institute Early Detection Research Network study of [-2]proPSA: improving prostate cancer detection and correlating with cancer aggressiveness. Cancer Epidemiol Biomarkers Prev; 19:1193-1200PubMedCrossRefGoogle Scholar
  248. Jansen FH et al (2010) Prostate-specific antigen (PSA) isoform p2PSA in combination with total PSA and free PSA improves diagnostic accuracy in prostate cancer detection. Eur Urol; 57:921-927PubMedCrossRefGoogle Scholar
  249. König H, Hallbach J (2009) Nonopioid analgesics and antirheumatics. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 189-214Google Scholar
  250. Demex®. Stand der Information 06/2003. In: FachInfo-Service, Rote Liste Service GmbH, BerlinGoogle Scholar
  251. Andriole GL et al (2009) Mortality results from a prostatecancer screening trial. N Engl J Med; 360:1310-1319PubMedCrossRefGoogle Scholar
  252. Schröder FH et al (2009) Screening and prostate-cancer mortality in a randomized European study. N Engl J Med; 360:1320-1328PubMedCrossRefGoogle Scholar
  253. Hugosson J et al (2010) Mortality results from the Göteborg randomised population-based prostate-cancer screening trial. Lancet Oncol 2010;11:725-32CrossRefGoogle Scholar
  254. Sturgeon CM, Duffy MJ, Stenman UH et al (2008) National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem 54:e11–79CrossRefGoogle Scholar
  255. Semjonow A, Lamerz R (2008) PSA. In Thomas L (Hrsg) Labor und Diagnose. 7. Aufl. TH-Books, Frankfurt/Main, S 1342-1351Google Scholar
  256. Sturgeon CM, Duffy MJ, Stenman UH et al (2008) National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem 54:e11–79CrossRefGoogle Scholar
  257. Semjonow A, Lamerz R (2008) PSA. In: Thomas L (Hrsg) Labor und Diagnose. 7. Aufl. TH-Books, Frankfurt/Main, S 1342-1351Google Scholar
  258. Sturgeon CM, Duffy MJ, Stenman UH et al (2008) National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem 54:e11–79CrossRefGoogle Scholar
  259. Semjonow A, Lamerz R (2008) PSA. In Thomas L (Hrsg) Labor und Diagnose. 7. Aufl. TH-Books, Frankfurt/Main, S 1342-1351Google Scholar
  260. Auprich M et al (2011) Contemporary Role of Prostate Cancer Antigen 3 in the Management of Prostate Cancer. Eur Urol. published onlineGoogle Scholar
  261. Haese A et al (2008) Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur Urol; 54:1081-1088PubMedCrossRefGoogle Scholar
  262. Perdonà S et al (2011) Prostate cancer detection in the „grey area“ of prostate-specific antigen below 10 ng/mL: head-to-head comparison of the updated PCPT calculator and Chun’s nomogram, two risk estimators incorporating prostate cancer antigen 3. Eur Urol; 59:81-87PubMedCrossRefGoogle Scholar
  263. Jansen FH et al (2010) Prostate-specific antigen (PSA) isoform p2PSA in combination with total PSA and free PSA improves diagnostic accuracy in prostate cancer detection. Eur Urol; 57:921-927PubMedCrossRefGoogle Scholar
  264. Sokoll LJ et al (2010) A prospective, multicenter, National Cancer Institute Early Detection Research Network study of [-2]proPSA: improving prostate cancer detection and correlating with cancer aggressiveness. Cancer Epidemiol Biomarkers Prev; 19:1193-1200PubMedCrossRefGoogle Scholar
  265. Maupin-Furlow JA, Gil MA, Karadzic IM et al (2004) Proteasomes: Perspectives from the Archaea. Front Biosci 9:1743-2758PubMedCrossRefGoogle Scholar
  266. Adams J (2004) The Proteasome: A Suitable Antineoplastic Target. Nat Rev Cancer 4:349-360PubMedCrossRefGoogle Scholar
  267. Aguzzi F, Whicher JT, Chir B, Johnson AM (1996) Protein Metabolism in RF Ritchie, Olga Novolotskaia. Serum Proteins in Clinical Medicine 1:4.0-1 bis 4.0-9Google Scholar
  268. Hofmann W (2011) Diagnostische Pfade in der Harndiagnostik. In Hagemann P, Scholer A (Hrsg) Aktuelle Urindiagnostik für Labor und Arztpraxis. Rotkreuz Labolife, S 269-273Google Scholar
  269. Hofmann W, Ehrich JHH, Guder WG, Keller F, Scherberich J (2011) Diagnostische Pfade bei Nierenerkrankungen. J Lab Med 35:127-146Google Scholar
  270. Orsoneau JL, Douet P, Massoubre C et al (1989) An Improved Pyrogallol Red-Molybdat Method for Determining Total Urinary Protein. Clin Chem 35:2233-2236Google Scholar
  271. Regeniter A, Siede H, Scholer A (2003) Urindiagnostik bei Nierenerkrankungen. Eine Übersicht. labmed Jan:7-12Google Scholar
  272. Esmon CT (2001) Protein C, Protein S, and Thrombomodulin. In: Colman RW, Hirsh J, Marrde VJet al (eds) Hemostasis and Thrombosis. Lippincott Williams & Wilkins, Philadelphia, pp 335-353Google Scholar
  273. Esmon CT (2003) The Protein C Pathway. Chest 124:26–32SCrossRefGoogle Scholar
  274. Barthels M, von Depka M (2003) Das Gerinnungskompendium. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  275. Kraus M (1998) The Anticoagulant Potential of the Protein C System in Hereditary and Acquired Thrombophilia Pathomechanism and New Tools for Assessing its Clinical Relevance. Sem Thromb Hemost 24:337-357CrossRefGoogle Scholar
  276. Yang L, Manithody C, Walston TD et al (2003) Thrombomodulin Enhances the Reactivity of Thrombin with Protein C Inhibitor by Providing both a Binding Site for the Serpin and Allosterically Modulating the Activity of Thrombin. J Biol Chem 278:37465-37470PubMedCrossRefGoogle Scholar
  277. Chitolie A, Lawrie AS, Mackie IJ et al (2001) The Impact of Oral Anticoagulant Therapy, Factor VIII Level and Quality of Factor VDeficient Plasma on Three Commercial Methods for Activated Protein C Resisteance. Blood Coagulation and Fibrinolysis 12:179-186PubMedCrossRefGoogle Scholar
  278. Esmon CT (2001) Protein C, Protein S, and Thrombomodulin. In: Colman RW, Hirsh J, Marder VJ (eds) Hemostasis and Thrombosis. Lippincott Williams & Wilkins, Philadelphia, pp 335-353Google Scholar
  279. Rezende SM, Simmonds RE, Lane DA (2004) Coagulation, Inflammation, and Apoptosis: Different Roles for Protein S and the Protein SC4b Binding Protein Complex Blood 103:1192-1201Google Scholar
  280. Barthels M, von Depka M (2003) Das Gerinnungskompendium. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  281. Forastiero RR, Martinuzzo ME, Lu L, Broze GJ (2003) Autoimmune Antiphospholipid Antibodies impair the Inhibition of Activated Factor X by Protein Z/Protein Z-Dependent Protease Inhibitor. J Thromb Haemost 1:1764-1770PubMedCrossRefGoogle Scholar
  282. Broze GJ Jr (2001) Protein Z-Dependent Regulation of Coagulation. Thromb Haemost 86:8-13PubMedGoogle Scholar
  283. Tabatabai A, Fiehler R, Broze GJ Jr (2001) Protein Z circulates in plasma in a complex with protein Z-dependent proteinase inhibitor. Thromb Haemost 85:655-660PubMedGoogle Scholar
  284. Greiling H, Gressner AM (1994) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, Stuttgart, S 231-232;1271-1272Google Scholar
  285. Watson KR, Wild G, Smith S (1989) Nafamostat to stabilise plasma sample taken for complement measurements. Lancet 1:896-897Google Scholar
  286. Narayanan S (1987) Protection of peptidic substrates by protease inhibitors. Biochim Clin 11:954-956Google Scholar
  287. Menssen HD, Melber K, Brandt N, Thiel E (2001) The use of hirudin as universal anticoagulant in haematology, clinical chemistry and blood grouping. Clin Chem Lab Med 39:1367-1377CrossRefGoogle Scholar
  288. Perrault J, Markowitz H (1984) Protein-losing gastroenteropathy and the intestinal clearance of serum alpha-1-antitrypsin. Mayo Clin Proc 59:278-279Google Scholar
  289. Boege F, Deubel M, Schwarte B et al (1989) Eine schnelle und einfache Methode zur nephelometrischen Bestimmung des fäkalen Alpha1-Antitrypsins. Lab med 13:254-258Google Scholar
  290. Hofmann W, Schmolke M (2009) Niere und ableitende Harnwege. In: Renz H (Hrsg) Praktische Labordiagnostik. W de Gruyter, Berlin, S 245-278Google Scholar
  291. Hirsh J, Dalen J, Anderson DR et al (2001) Oral Anticoagulants: Mechanism of Action, Clinical Effectiveness, and Optimal Therapeutic Range. Chest 119:8–21SCrossRefGoogle Scholar
  292. Ibelgaufts H (1993) Gentechnologie von A bis Z. VCH, Weinheim Leybold K, Grabener E (1976) Praxis-Laboratorium. 7. Aufl. Thieme StuttgartGoogle Scholar
  293. Keller H (1986) Klinisch-chemische Labordiagnostik für die Praxis. Thieme StuttgartGoogle Scholar
  294. Chaudhuri TK, Paul S (2006) Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J 273:1331-1349PubMedCrossRefGoogle Scholar
  295. Fiedler H (2010) Proteopathien – Proteinfehlfaltungskrankheiten. MTA Dialog 9:766-769Google Scholar
  296. Löffler G, Petrides PE (1998) Biochemie und Pathobiochemie. 6. Aufl. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  297. Hofmann W, Ehrich JHH, Guder WG, Keller F, Scherberich J (2011) Diagnostische Pfade bei Nierenerkrankungen. J Lab Med 35:127-146Google Scholar
  298. Guder WG, Hofmann W (2008) Clinical role of urinary low molecular weight proteins: their diagnsotic and prognostic implications. Scand J Clin Lab Invest 68; Suppl 241:95-98CrossRefGoogle Scholar
  299. Hofmann W, Garbrecht M, Bradwell AR, Guder WG (2004) A new concept for detection of Bence Jones Proteinuria in patients with monoclonal gammopathy. Clin Lab 50:181-185PubMedGoogle Scholar
  300. Fosang AJ, Hardingham TE (1996) Matrix Proteoglycans. In: Comper WD (ed) Extracellular Matrix. Vol 2: Molecular compounds and interactions. Harwood Publishers, AmsterdamGoogle Scholar
  301. Park PW, Reizes O, Bernfield M (2000) Cell surface heparan sulfate proteoglycans: selective regulators of ligand receptor encounters. J Biol Chem 275:29923-29926PubMedCrossRefGoogle Scholar
  302. Forsberg E, Kjellen L (2001) Heparan sulfate: lessons from knockout mice. J Clin Invest 108:175-180PubMedGoogle Scholar
  303. Westermeier R, Loyland S, Asbury R (2002) Proteomics Technology. J Clin Ligand Ass 25:242-252Google Scholar
  304. Schrattenholz A (Hrsg) (2001) Methoden der Proteomforschung. Molekulare Analyse der Proteinexpression. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  305. Jenny NS, Mann KG (2001) Thrombin. In: Colman RW, Hirsh J, Marr VJ etde al (eds) Hemostasis and Thrombosis. Lippincott Williams & Wilkins, Philadelphia, pp 171-189Google Scholar
  306. Barthels M, von Depka M (2003) Das Gerinnungskompendium. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  307. Mann KG (2003) Thrombin formation. Chest 124:45-105CrossRefGoogle Scholar
  308. Calatzis A, Spannagl M, Gempeler-Messina P et al (2000) The Prothrombinase Induced Clotting Test: New Technique for Monitoring of Anticoagulantsl Haemostasis 30:172-174Google Scholar
  309. Seligsohn U, Lubetsky A (2001) Genetic Susceptibility to Venous Thrombosis. N Engl J Med 344:1222-1231PubMedCrossRefGoogle Scholar
  310. Zotz RB, Gerhardt A, Scharf RE (2003) Inherited Thrombophilia and Gestational Venous Thromboembolism. Best Pract Res Clin Haematol 16:243-259PubMedCrossRefGoogle Scholar
  311. Goerz G, Link-Mannhardt A, Bolsen K et al (1995) Porphyrin Concentrations in Various Human Tissues. Exp Dermatol 4:218-220PubMedCrossRefGoogle Scholar
  312. Labbe RF (1977) History and Background of Protoporphyrin Testing. Clin Chem 23:256-259PubMedGoogle Scholar
  313. Bray D, Lay S (1997) Computer-based analysis of the binding steps in protein complex formation. Proc Wat L Acad Sci USA 94;13493-13498, BiochemistryCrossRefGoogle Scholar
  314. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  315. Polgar J, Matuskova J, Wagner DD (2005) The P-selectin, tissue factor, coagulation triad. J Thromb Haemost 3:1590-1596PubMedCrossRefGoogle Scholar
  316. Working group on enzymes (1992) Proposal of standard methods for the determination of enzyme catalytic concentrations in serum and plasma at 37 °C II. Cholinesterase (acylcholine acylhydrolase, EC 3.1.1.8). Eur J Clin Chem Clin Biochem 30:163-170Google Scholar
  317. Boll I (1991) Knochenmark-Zytologoie. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 294CrossRefGoogle Scholar
  318. Lawson N, Lang T, Broughton A et al (2002) Creatinine assays: time for action? Ann Clin Biochem 39:599-602PubMedCrossRefGoogle Scholar
  319. Theml H, Diem H, Haferlach T (2002) Taschenatlas der Hämatologie. 5. Aufl. Georg Thieme Verlag, Stuttgart, S 40-41Google Scholar
  320. Sticht G, Käferstein H (2009) Psilocybin/Psilocin. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 503-507Google Scholar
  321. Hapke H-J (1999) Ableitung von Grenzwerten (Umweltstandards) – Lebensmittel. In: Wichmann HE, Schlipköter HW, Fülgraff G (Hrsg) Handbuch der Umweltmedizin. ecomed Verlagsgesellschaft, Landsberg/Lech, III-1.3.6Google Scholar
  322. Lottspeich F, Zorbas H (1998) Bioanalytik. Spektrum Akademischer Verlag, Heidelberg BerlinGoogle Scholar
  323. Schwartz DC, Cantor CR (1984) Separation of Yeast Chromosomal-Sized DNAs by Pulsed Field Gradient Gel Electrophoresis. Cell 37:67-75PubMedCrossRefGoogle Scholar
  324. Rasch D (1988) Biometrisches Wörterbuch. Verlag Harri Deutsch, Frankfurt am MainGoogle Scholar
  325. Lesch M, Nyhan WL (1964) A Familial Disorder of Uric Acid Metabolism and Central Nervous System Dysfunction. Am J Med 36:561-570PubMedCrossRefGoogle Scholar
  326. Simmonds HA, Duley JA, Davies PM (1991) Analysis of purines and pyrimidines in blood, urine and other physiological fluids. In: Hommes FA (ed) Techniques in Diagnostic Human Biochemical Genetics: A Laboratory Manual. Wiley-Liss, New York, pp 397-424Google Scholar
  327. Van Den Berghe G, Vincent MF, Jaeken J (1997) Inborn Errors of the Purine Nucleotide Cycle: Adenylosuccinase Deficiency. J Inherit Metab Dis 20:193-202PubMedCrossRefGoogle Scholar
  328. Hallmann L (1980) Klinische Chemie und Mikroskopie. 11. Aufl. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  329. Geldmacher-von Mallinckrodt M (2009) Pyrethroids. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 599-603Google Scholar
  330. Löffler M, Fairbanks LD, Zameitat E, Marinaki AM, Simmonda HA (2005) Pyrimidine pathways in health and disease. Trend Molec Med 11:430-437CrossRefGoogle Scholar
  331. Van Den Berghe G, Vincent MF, Marie S (2000) Disorders of Purine and Pyrimidine Metabolism. In: Fernandes J, Saudubray J-M, van den Berghe G (eds) Inborn Metabolic Diseases: Diagnosis and Treatment. 3rd edn. Springer-Verlag, Berlin Heidelberg New York, pp 354-368Google Scholar
  332. Falbe J, Regitz M (1992) Römpp Chemie Lexikon. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  333. Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84-89PubMedCrossRefGoogle Scholar
  334. Ronaghi M, Uhlen M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363-365.CrossRefGoogle Scholar
  335. Diamandis E, Fritsche HA, Lilja H et al (2002) Tumor markers. Physiology, pathobiology, technology, and clinical applications. 1st edn. AACC Press, Washington DCGoogle Scholar
  336. Zanella A (2000) Red cell pyruvate kinase deficiency: from genetics to clinical manifestation. Baillière’s Clinical Haematology 13:57-81PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Axel M. Gressner
    • 1
  • Torsten Arndt
    • 2
    • 3
  1. 1.laboratoriumsmedizin kölnDres. med. Wisplinghoff und KollegenKöln
  2. 2.Institut für Medizinische Diagnostik GmbHBioscientiaIngelheim
  3. 3.Institut für Laboratoriumsmedizin und Pathobiochemie, Molekulare Diagnostik Standort MarburgUniversitätsklinikum Gießen und Marburg GmbHMarburg

Personalised recommendations