Content-Based Retrieval and Classification of Ultrasound Medical Images of Ovarian Cysts

  • Abu Sayeed Md. Sohail
  • Prabir Bhattacharya
  • Sudhir P. Mudur
  • Srinivasan Krishnamurthy
  • Lucy Gilbert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5998)

Abstract

This paper presents a combined method of content-based retrieval and classification of ultrasound medical images representing three types of ovarian cysts: Simple Cyst, Endometrioma, and Teratoma. Combination of histogram moments and Gray Level Co-Occurrence Matrix (GLCM) based statistical texture descriptors has been proposed as the features for retrieving and classifying ultrasound images. To retrieve images, relevance between the query image and the target images has been measured using a similarity model based on Gower’s similarity coefficient. Image classification has been performed applying Fuzzy k-Nearest Neighbour (k-NN) classification technique. A database of 478 ultrasound ovarian images has been used to verify the retrieval and classification accuracy of the proposed system. In retrieving ultrasound images, the proposed method has demonstrated above 79% and 75% of average precision considering the first 20 and 40 retrieved images respectively. Further, 88.12% of average classification accuracy has been achieved in classifying ultrasound images using the proposed method.

Keywords

Ultrasound Medical Image Retrieval Ovarian Cyst Classification Texture Feature Histogram Moments Fuzzy k-NN 

References

  1. 1.
    Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A Review of Content-Based Image Retrieval Systems in Medical Applications-Clinical Benefits and Future Directions. Journal of Medical Informatics 73(1), 1–23 (2004)CrossRefGoogle Scholar
  2. 2.
    Lehman, T.M., Güld, M.O., Thies, C., Fischer, B., Spitzer, K., Keysers, D., Ney, H., Kohnen, M., Schubert, H., Wein, B.B.: Content-Based Image Retrieval in Medical Applications. Methods of Information in Medicine 43(4), 354–361 (2004)Google Scholar
  3. 3.
    Van Nagell, J.R., Depriest, P.D., Donaldson, E.S., Gallion, H.H., Pavlik, E.J., Kryscio, R.J.: Ovarian Cancer Screening in Asymptomatic Postmenopausal Women by Transvaginal Sonography. Cancer 68(3), 458–462 (2006)CrossRefGoogle Scholar
  4. 4.
    Stricker, M., Orengo, M.: Similarity of Color Images. In: SPIE: Storage and Retrieval for Image and Video Databases III, vol. 2420, pp. 381–392. SPIE Publications, Bellingham (1995)Google Scholar
  5. 5.
    Mandal, M.K., Aboulnsar, T., Panchanathan, S.: Image Indexing Using Moments and Wavelet. IEEE Trans. Consumer Electronics 41, 557–565 (1996)CrossRefGoogle Scholar
  6. 6.
    Haralick, R.M., Shanmugan, K., Dinstein, I.: Textural Features for Image Classification. IEEE Trans. Systems, Man and Cybernetics. 3(6), 610–621 (1973)CrossRefGoogle Scholar
  7. 7.
    Soh, L.-K., Tsatsoulis, C.: Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-Occurrence Matrices. IEEE Trans. Geoscience Remote Sensing 37(2), 780–795 (1999)CrossRefGoogle Scholar
  8. 8.
    Gower, J.C.: A General Coefficient of Similarity and Some of Its Properties. Biometrics 27(4), 857–871 (1971)CrossRefGoogle Scholar
  9. 9.
    Abbadeni, N.: Content Representation and Similarity Matching for Texture-Based Image Retrieval. In: 5th ACM SIGMM international Workshop on Multimedia information Retrieval (MIR 2003), pp. 63–70. ACM Publications, New York (2007)Google Scholar
  10. 10.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)MATHGoogle Scholar
  11. 11.
    Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York (1973)MATHGoogle Scholar
  12. 12.
    Keller, J.M., Gray, M.R., Givens, J.A.: A Fuzzy k-Nearest Neighbor Algorithm. IEEE Trans. Systems Man Cybernetics 15(4), 580–585 (1985)Google Scholar
  13. 13.
    Klir, G.S., Yuan, B.: Fuzzy Sets and Fuzzy Logic Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)MATHGoogle Scholar
  14. 14.
    Sarkar, M.: Fuzzy-Rough Nearest Neighbor Algorithm in Classification. Fuzzy Sets and Systems 158, 2134–2152 (2007)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Abu Sayeed Md. Sohail
    • 1
  • Prabir Bhattacharya
    • 2
  • Sudhir P. Mudur
    • 1
  • Srinivasan Krishnamurthy
    • 3
  • Lucy Gilbert
    • 3
  1. 1.Dept. of Computer Science and Software EngineeringConcordia UniversityCanada
  2. 2.Dept. of Computer ScienceUniversity of CincinnatiOhioUSA
  3. 3.Dept. of Obstetrics and GynecologyRoyal Victoria HospitalMontrealCanada

Personalised recommendations