Variational Bayes Adapted GMM Based Models for Audio Clip Classification
Abstract
The most commonly used method for parameter estimation in the Gaussian mixture models (GMMs) is maximum likelihood (ML). However, it suffers from the overfitting when the model complexity is high. Adapted GMM is an extended version of GMMs and it helps to reduce the overfitting in the model. Variational Bayesian method helps in determining optimal complexity so that it avoids overfitting. In this paper we propose the variational Bayes learning method for training the adapted GMMs. The proposed approach is free from overfitting and singularity problems that arise in the other approaches. This approach is faster in training and allows a fast-scoring technique during testing to reduce the testing time. Studies on the classification of audio clips show that the proposed approach gives a better performance compared to GMMs, adapted GMMs, variational Bayes GMMs.
Keywords
GMM variational learning Bayesian adaptationReferences
- 1.Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)MATHCrossRefGoogle Scholar
- 2.Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted Gaussian mixture models. Digital Signal Processing 10, 19–41 (2000)CrossRefGoogle Scholar
- 3.Nasios, N., Bors, A.: Variational learning for Gaussian mixture model. IEEE Trans. System, Man, and Cybernetics 36, 849–862 (2006)CrossRefGoogle Scholar
- 4.Zheng, R., Ulang, S., Xu, B.: Text-independent speaker identification using GMM-UBM and frame level likelihood normalization. In: Proc. ISCSLP, pp. 289–292 (2004)Google Scholar
- 5.Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2000)Google Scholar
- 6.Gauvain, J.L., Lee, C.-H.: Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains. IEEE Trans. Speech and Audio Processing 2, 291–298 (1994)CrossRefGoogle Scholar
- 7.Aggarwal, G., Bajpai, A., Khan, A.N., Yegnanarayana, B.: Exploring features for audio indexing. Inter-Research Institute Student Seminar, IISc Bangalore (March 2002)Google Scholar