Mining Local Association Rules from Temporal Data Set

  • Fokrul Alom Mazarbhuiya
  • Muhammad Abulaish
  • Anjana Kakoti Mahanta
  • Tanvir Ahmad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)

Abstract

In this paper, we present a novel approach for finding association rules from locally frequent itemsets using rough set and boolean reasoning. The rules mined so are termed as local association rules. The efficacy of the proposed approach is established through experiment over retail dataset that contains retail market basket data from an anonymous Belgian retail store.

Keywords

Data mining Temporal data mining Local association rule mining Rough set Boolean reasoning 

References

  1. 1.
    Ale, J.M., Rossi, G.H.: An Approach to Discovering Temporal Association Rules. In: Proceedings of ACM symposium on Applied Computing, pp. 294–300 (2000)Google Scholar
  2. 2.
    Mahanta, A.K., Mazarbhuiya, F.A., Baruah, H.K.: Finding Locally and Periodically Frequent Sets and Periodic Association Rules. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 576–582. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Paulak, Z.: Rough Sets in Theoretical Aspects of Reasoning about Data. Kluwer, Netherland (1991)Google Scholar
  4. 4.
    Nguyen, H.S., Nguyen, S.H.: Rough Sets and Association Rule Generation. Fundamenta Informaticae 40(4), 383–405 (1999)MATHMathSciNetGoogle Scholar
  5. 5.
    Nguyen, H.S., Slezak, D.: Approximate Reducts and Association Rules- Correspondence and Complexity Results. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 137–145. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Skowron, A., Rauszer, C.: The Dicernibility Matrices and Functions in Information Systems. In: Slowinski, R. (ed.) Intelligent Decision support, Handbook of Applications and Advances of the Rough Sets Theory, pp. 331–362. Kluwer, Dordrecht (1992)Google Scholar
  7. 7.
    Wróblewski, J.: Covering with Reducts - A Fast Algorithm for Rule Generation. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 402–407. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Fokrul Alom Mazarbhuiya
    • 1
  • Muhammad Abulaish
    • 2
  • Anjana Kakoti Mahanta
    • 3
  • Tanvir Ahmad
    • 4
  1. 1.College of Computer ScienceKing Khalid UniversityAbha
  2. 2.Department of Computer ScienceJamia Millia IslamiaDelhiIndia
  3. 3.Department of Computer ScienceGauhati UniversityIndia
  4. 4.Department of Computer EngineeringJamia Millia IslamiaDelhiIndia

Personalised recommendations