Cross-Correlation and Evolutionary Biclustering: Extracting Gene Interaction Sub-networks

  • Ranajit Das
  • Sushmita Mitra
  • Subhasis Mukhopadhyay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)

Abstract

In this paper we present a simple and novel time-dependent cross-correlation-based approach for the extraction of simple gene interaction sub-networks from biclusters in temporal gene expression microarray data. Preprocessing has been employed to retain those gene interaction pairs that are strongly correlated. The methodology was applied to public-domain data sets of Yeast and the experimental results were biologically validated based on standard databases and information available in the literature.

Keywords

Biclustering transcriptional regulatory network time-delay time-lagged correlation gene interaction network 

References

  1. 1.
    Mitra, S., Das, R., Hayashi, Y.: Genetic networks and soft computing. IEEE/ACM Transactions on Computational Biology and Bioinformatics (to appear)Google Scholar
  2. 2.
    Balasubramaniyan, R., Hüllermeier, E., Weskamp, N., Kamper, J.: Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics 21, 1069–1077 (2005)CrossRefGoogle Scholar
  3. 3.
    Cheng, Y., Church, G.M.: Biclustering of gene expression data. In: Proceedings of ISMB 2000, pp. 93–103 (2000)Google Scholar
  4. 4.
    Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recognition 39, 2464–2477 (2006)MATHCrossRefGoogle Scholar
  5. 5.
    Mitra, S., Das, R., Banka, H., Mukhopadhyay, S.: Gene interaction - An evolutionary biclustering approach. Information Fusion 10, 242–249 (2009)CrossRefGoogle Scholar
  6. 6.
    Qian, J., Lin, J., Luscombe, N.M., Yu, H., Gerstein, M.: Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics 19, 1917–1926 (2003)CrossRefGoogle Scholar
  7. 7.
    Cho, R.J., Campbell, M.J., Winzeler, L.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)CrossRefGoogle Scholar
  8. 8.
    Yu, H., Gerstein, M.: Genomic analysis of the hierarchical structure of regulatory networks. Proceedings of National Academy of Sciences USA 103, 14724–14731 (2006)CrossRefGoogle Scholar
  9. 9.
    Zeitlinger, J., Simon, I., Harbison, C., Hannett, N., Volkert, T., Fink, G., Young, R.: Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113, 395–404 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ranajit Das
    • 1
  • Sushmita Mitra
    • 1
  • Subhasis Mukhopadhyay
    • 2
  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia
  2. 2.Department of Bio-Physics, Molecular Biology and BioinformaticsCalcutta UniversityKolkataIndia

Personalised recommendations