Lithium Isotopes as Tracers in Marine and Terrestrial Environments

  • K. W. BurtonEmail author
  • N. Vigier
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)


The investigation and the use of lithium isotopes as tracers of water-rock interactions at low and high temperature have significantly developed over the last 10 years. This chapter relates our current understanding of lithium isotope and elemental behaviour in the Earth’s surface environment. In the introduction, we provide information on the chemical properties and behaviour of lithium, its occurrence and applications. The first section reviews the techniques used for the measurement of Li isotopes. The second section outlines the primary sources of Li in the environment and their potential impact on the hydrological cycle. The third and fourth sections investigate the impact of chemical weathering of continental rocks and oceanic crust, respectively. Finally, the last section assesses marine records of lithium.


Isotope Composition Isotope Fractionation Secondary Mineral Fractionation Factor Planktonic Foraminifera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the two reviewers, an anonymous reviewer and Rachael James, for their constructive comments on this chapter. We are also grateful for the detailed comments of the Editor, Mark Baskaran.


  1. Anderson MA, Bertsch PM, Miller WP (1989) Exchange and apparent fixation of lithium in selected soils and clay minerals. Soil Sci 148:46–52Google Scholar
  2. Anghel I, Turin HJ, Reimus PW (2002) Lithium sorption to Yucca Mountain tuffs. Appl Geochem 17:819–824Google Scholar
  3. Bach RO (ed) (1985) Lithium – current applications in science, medicine and technology. Wiley, New YorkGoogle Scholar
  4. Bayon G, Vigier N, Burton KW, Brenot A, Carignan J, Chu N-C, Etoubleau J (2006) The control of weathering process on riverine and seawater hafnium isotope ratios. Geology 34:433–436Google Scholar
  5. Benton LD, Ryan JG, Savov IP (2004) Lithium abundance and isotope systematics of forearc serpentinites, conical seamount, Mariana forearc: insights into the mechanics of slab-mantle exchange during subduction. Geochem Geophys Geosyst 8. doi: 10.1029/2004GC000708
  6. Blum JD, Erel Y (1995) A silicate weathering mechanism linking increase in marine 87Sr/86Sr with global glaciation. Nature 373:415–418Google Scholar
  7. Brunskill GJ, Zagorskis I, Pfitzner J (2003) Geochemical mass balance for lithium, boron, and strontium in the Gulf of Papua, Papua New Guinea (Project TROPICS). Geochim Cosmochim Acta 67:3365–3383Google Scholar
  8. Burles S, Nollett KM, Turner MS (2001) Big bang nucleosynthesis predictions for precise cosmology. Astrophys J 552:L1–L5Google Scholar
  9. Carignan J, Cardinal D, Eisenhauer A, Galy A, Rehkämper M, Wombacher F, Vigier N (2004) A reflection on Mg, Ca, Cd, Li and Si isotopic measurements and related reference materials. Geostand Geoanal Res 28:139–148Google Scholar
  10. Carignan J, Vigier N, Millot R (2007) Three secondary reference materials for Li isotopic measurements: 7Li-N, 6Li-N and LiCl-N. Geostand Geoanal Res 31:7–12Google Scholar
  11. Chan LH (1987) Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate. Anal Chem 59:2662–2665Google Scholar
  12. Chan L-H, Edmond JM (1988) Variation of lithium isotope composition in the marine environment: a preliminary report. Geochim Cosmochim Acta 52:1711–1717Google Scholar
  13. Chan L-H, Frey FA (2003) Lithium isotope geochemistry of the Hawaiian plume: results from the Hawaiian Scientific Drilling Project and Koolau Volcano. Geochem Geophys Geosyst 4:8707Google Scholar
  14. Chan L-H, Hein JR (2007) Lithium contents and isotopic compositions of ferromanganese deposits from the global ocean. Deep Sea Res I Top Stud Oceanogr 54:1147–1162Google Scholar
  15. Chan LH, Kastner M (2000) Lithium isotopic composition of pore fluids and sediments in the Costa Rica subduction zone: implications for fluid processes and sediment contribution to the arc volcanoes. Earth Planet Sci Lett 183:275–290Google Scholar
  16. Chan L-H, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160Google Scholar
  17. Chan L-H, Edmond JM, Thompson G (1993) A lithium isotope study of hot springs and metabasalts from Mid-Ocean ridge hydrothermal systems. J Geophys Res 98:9653–9659Google Scholar
  18. Chan L-H, Gieskes JM, You C-F, Edmond JM (1994) Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guyamas Basin, Gulf of California. Geochim Cosmochim Acta 58:4443–4454Google Scholar
  19. Chan L-H, Alt JC, Teagle DAH (2002) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet Sci Lett 201:187–201Google Scholar
  20. Chan LH, Leeman WP, Plank T (2006) Lithium isotopic composition of marine sediments. Geochem Geophys Geosyst 7:Q06005. doi: 10.1029/2005GC001202 CrossRefGoogle Scholar
  21. Chaussidon M, Robert F (1998) 7Li/6Li and 11B/10B variations in chondrules from the Semarkona unequilibrated chondrite. Earth Planet Sci Lett 164:577–589Google Scholar
  22. Colten VA, Hanor JS (1984) Variations in dissolved lithium in the Mississippi River and Mississippi River Estuary, Louisiana, USA, during Low River stage. Chem Geol 47:85–96Google Scholar
  23. Comans RNJ, Haller M, De Preter P (1991) Sorption of cesium on illite: non-equilibrium behaviour and reversibility. Geochim Cosmochim Acta 55:433–440Google Scholar
  24. Decitre S, Deloule E, Resiberg L, James R, Agrinier P, Mével C (2002) Behaviour of Li and its isotopes during serpentinization of oceanic peridotites. Geochem Geophys Geosyst 3. doi: 10.1029/2001GC000178 Google Scholar
  25. Delaney ML, Boyle EA (1986) Lithium in foraminiferal shells: implications for high-temperature hydrothermal circulation fluxes and oceanic crustal generation rates. Earth Planet Sci Lett 80:91–105Google Scholar
  26. Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci 24:191–224Google Scholar
  27. Elliott T, Thomas A, Jeffcoate A, Niu Y (2006) Lithium isotope evidence for subduction enriched mantle in the source of mid-ocean-ridge basalts. Nature 443:565–568Google Scholar
  28. Falkner KK, Chruch M, Measures CI, LeBaron G, Thouron D, Jeandel C, Strodal MC, Gill GA, Mortlock R, Froelich P, Chan LH (1997) Minor and trace element chemistry of Lake Baikal, its tributaries, and surrounding hot springs. Limnol Oceanogr 42:329–345Google Scholar
  29. Hall JM, Chan L-H (2004) Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation. Geochim Cosmochim Acta 68:529–545Google Scholar
  30. Hall JM, Chan L-H, McDonough WF, Turekian KK (2005) Determination of the lithium isotopic composition of planktic foraminifera and its application as a paleo-seawater proxy. Mar Geol 217:255–265Google Scholar
  31. Hathorne EC, James RH (2006) Temporal record of lithium in seawater: a tracer for silicate weathering? Earth Planet Sci Lett 246:393–406Google Scholar
  32. Hathorne EC, James RH, Lampitt RS (2009) Environmental versus biomineralization controls on the intratest variation in the trace element composition of the planktonic foraminifera G. inflata and G. scitula. Paleoceanography 24:PA4204. doi: 10.1029/2009PA001742 CrossRefGoogle Scholar
  33. Heier KS, Billings GK (1970) Lithium. In: Wedepohl KH (ed) Handbook of geochemistry, vol II-1. Springer, Berlin, pp 3-A-1–3-O-1Google Scholar
  34. Henderson GM, Burton KW (1999) Using (234U/238U) to assess diffusion rates of isotope tracers in ferromanganese crusts. Earth Planet Sci Lett 170:169–179Google Scholar
  35. Hoefs J, Sywall M (1997) Lithium isotope composition of quaternary and tertiary biogene carbonates and a global lithium isotope balance. Geochim Cosmochim Acta 61:2679–2690Google Scholar
  36. Huh Y, Chan LH, Zhang L, Edmond JM (1998) Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget. Geochim Cosmochim Acta 62:2039–2051Google Scholar
  37. Huh Y, Chan L-H, Edmond JM (2001) Lithium isotopes as a probe of weathering processes: Orinoco River. Earth Planet Sci Lett 194:189–199Google Scholar
  38. Huh Y, Chan L-H, Chadwick O (2004) Behaviour of lithium and its isotopes during weathering of Hawaiian basalts. Geochem Geophys Geosyst 5. doi: 10.1029/2004GC000729 Google Scholar
  39. James RH, Palmer MR (2000a) The lithium isotope composition of international rock standards. Chem Geol 166:319–326Google Scholar
  40. James RH, Palmer MR (2000b) Marine geochemical cycles of the alkali elements and boron: the role of sediments. Geochim Cosmochim Acta 63:3111–3122Google Scholar
  41. James RH, Rudnicki MD, Palmer MR (1999) The alkali element and boron geochemistry of the Escanaba Trough sediment-hosted hydrothermal system: the role of sediments. Earth Planet Sci Lett 171:157–169Google Scholar
  42. James RH, Allen DE, Seyfried WE Jr (2003) An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350°C): insights as to chemical processes in near-shore ridge-flank hysrothermal systems. Geochim Cosmochim Acta 67:681–691Google Scholar
  43. Jeffcoate AB, Elliott T, Thomas A, Bouman C (2004) Precise, small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS. Geostand Geoanal Res 28:161–172Google Scholar
  44. Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218Google Scholar
  45. Jiang X, Lin X, Yao D, Zhai S, Guo W (2007) Geochemistry of lithium in marine ferromanganese oxide deposits. Deep Sea Res I 54:85–98Google Scholar
  46. Kasemann SA, Jeffcoate AB, Elliott T (2005) Lithium isotope composition of basalt glass reference material. Ann Chem 77:5251–5257Google Scholar
  47. Kisakurek B, Widdowson M, James RH (2004) Behaviour of Li isotopes during continental weathering: the Bidar laterite profile. India Chem Geol 212:27–44Google Scholar
  48. Kisakurek B, James RH, Harris NBW (2005) Li and delta Li-7 in Himalayan rivers: proxies for silicate weathering? Earth Planet Sci Lett 237:387–401Google Scholar
  49. Korn AJ, Grundahl F, Richard O, Barklem PS, Mashonkina L, Collet R, Piskunov N, Gustafsson (2006) A probable stellar solution to the cosmological lithium discrepancy. Nature 442:657–659Google Scholar
  50. Kosler J, Kucera M, Sylvester P (2001) Precise measurement of Li isotopes in planktonic foraminiferal tests by quadrupole ICPMS. Chem Geol 181:169–179Google Scholar
  51. Lear CH, Rosenthal Y (2006) Benthic foraminiferal Li/Ca: insights into Cenozoic seawater carbonate saturation state. Geology 34:985–988Google Scholar
  52. Lemarchand E, Chabaux F, Vigier N, Millot R, Pierret M-C (2010) Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France). Geochim Cosmochim Acta 74:4612–4628Google Scholar
  53. Marriott CS, Henderson GM, Belshaw NS, Tudhope AW (2004a) Temperature dependence of δ7Li, δ44Ca and Li/Ca incorporation into calcium carbonate. Earth Planet Sci Lett 222:615–624Google Scholar
  54. Marriott CS, Henderson GM, Crompton R, Staubwasser M, Shaw S (2004b) Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate. Chem Geol 212:5–15Google Scholar
  55. Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob Biogeochem Cycles 7:927–957Google Scholar
  56. Millot R, Guerrot C, Vigier N (2004) Accurate and high-precision measurement of lithium isotopes in two reference materials by MC-ICP-MS. Geostand Geoanal Res 28:153–159Google Scholar
  57. Millot R, Petelet-Giraud E, Guerrot C, Négrel P (2010a) Multi-isotopic composition (δ7Li–δ11B–δD–δ18O) of rainwaters in France: origin and spatio-temporal characterization. Appl Geochem 25:1510–1524Google Scholar
  58. Millot R, Vigier N, Gaillardet J (2010b) Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada. Geochim Cosmochim Acta 74:3897–3912Google Scholar
  59. Millot R, Scaillet B, Sanjuan B (2010c) Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach. Geochim Cosmochim Acta 74:1852–1871Google Scholar
  60. Moriguti T, Nakamura E (1998) High-yield lithium separation and precise isotopic analysis for natural rock and aqueous samples. Chem Geol 145:91–104Google Scholar
  61. Nishio Y, Okamura K, Tanimizu M, Ishikawa T, Sano Y (2010) Lithium and strontium isotopic systematics of waters around Ontake volcano, Japan: implications for deep-seated fluids and earthquake swarms. Earth Planet Sci Lett 297:567–576Google Scholar
  62. O’Neil JR (1986) Theoretical and experimental aspects of isotopic fractionation. Rev Mineral 16:1–40Google Scholar
  63. Olive KA, Schramm DN (1992) Astrophysical 7Li as a product of Big Bang nucleosynthesis and galactic cosmic-ray spallation. Nature 360:439–442Google Scholar
  64. Olsher U, Izatt RM, Bradshaw JS, Dalley NK (1991) Coordination chemistry of lithium ion: a crystal and molecular structure review. Chem Rev 91:137–164Google Scholar
  65. Palko AA, Drury JS, Begun GM (1976) Lithium isotope separation factors of some two-phase equilibrium systems. J Chem Phys 64:1828–1837Google Scholar
  66. Pistiner JS, Henderson GM (2003) Lithium-isotope fractionation during continental weathering processes. Earth Planet Sci Lett 214:327–339Google Scholar
  67. Pogge von Strandmann PAE, Burton KW, James RH, van Calsteren P, Gíslason SR, Mokadem F (2006) Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain. Earth Planet Sci Lett 251:134–147Google Scholar
  68. Pogge von Strandmann PAE, James RH, van Calsteren P, Gíslason SR, Burton KW (2008) Lithium, magnesium and uranium isotope behaviour in the estuarine environment of basaltic islands. Earth Planet Sci Lett 274:462–471Google Scholar
  69. Pogge von Strandmann PAE, Burton KW, James RH, van Calsteren P, Gíslason SR (2010) Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain. Chem Geol 270:227–239Google Scholar
  70. Qi HP, Coplen TB, Wang QZ, Wang YH (1997) Unnatural isotopic composition of lithium reagents. Anal Chem 69:4076–4078Google Scholar
  71. Raiswell R, Tranter M, Benning LG, Siegert M, De’ath R, Huybrechts P, Payne T (2006) Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: implications for iron delivery to the oceans. Geochim Cosmochim Acta 70:2765–2780Google Scholar
  72. Rollion-Bard C, Vigier N, Meibom A, Blamart D, Reynaud S, Rodolfo-Metalpa R, Martin S, Gattuso J-P (2009) Effect of environmental conditions and skeletal ultrastructure on the Li isotopic composition of scleractinian corals, Earth Planet. Sci Lett 286:63–70. doi: 10.1016/j.epsl.2009.06.015 CrossRefGoogle Scholar
  73. Rosner M, Ball L, Peucker-Ehrenbrink B, Blusztajn J, Bach W, Erzinger J (2007) A simplified, accurate and fast method for lithium isotope analysis of rocks and fluids, and δ7Li values of seawater and rock reference materials. Geostand Geoanal Res 31:77–88Google Scholar
  74. Rudnick RL, Tomascak PB, Njo HB, Gardner LR (2004) Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chem Geol 212:45–57Google Scholar
  75. Savov IP, Ryan JG, D’Antonio M, Kelley K, Mattie P (2005) Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones. Geochem Geophys Geosyst 6:Q04J15. doi: 10.1029/2004GC000777 CrossRefGoogle Scholar
  76. Scholz F, Hensen C, Reitz A, Romer RL, Liebetrau V, Meixner A, Weise SM, Haeckel M (2009) Isotopic evidence (87Sr/86Sr, δ7Li) for alteration of the oceanic crust at deep-rooted mud volcanoes in the Gulf of Cadiz, NE Atlantic Ocean original research. Geochim Cosmochim Acta 73:5444–5459Google Scholar
  77. Scholz F, Hensen C, DeLange GJ, Haeckel M, Liebetrau V, Meixner A, Reitz A, Romer RL (2010) Lithium isotope geochemistry of marine pore waters – insights from cold seep fluids. Geochim Cosmochim Acta 74:3459–3475Google Scholar
  78. Schou M (1988) Lithium treatment of manic-depressive illness – past, present and perspectives. J Am Med Assoc 259:1834–1836Google Scholar
  79. Seyfried WE Jr, Chen X, Chan L-H (1998) Trace element mobility and lithium isotopic exchange during hydrothermal alteration of seafloor weathered basalt: an experimental study at 350°C, 500 bars. Geochim Cosmochim Acta 62:949–960Google Scholar
  80. Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767Google Scholar
  81. Spite M, Spite F (1982) Lithium abundance at the formation of the galaxy. Nature 297:483–485Google Scholar
  82. Stoffyn-Egli P (1982) Conservative behaviour of dissolved lithium in estuarine waters. Estuar Coast Shelf Sci 14:577–587Google Scholar
  83. Stoffyn-Egli P, Mackenzie FT (1984) Mass balance of dissolved lithium in the oceans. Geochim Cosmochim Acta 48:859–872Google Scholar
  84. Stoll PM, Stokes PE, Okamoto M (2001) Lithium isotopes: differential effects on renal function and histology. Bipolar Disord 3:174–180Google Scholar
  85. Symons EA (1985) Lithium isotope separation: a review of possible techniques. Sep Sci Tech 20:633–651Google Scholar
  86. Taylor TI, Urey HC (1938) Fractionation of the lithium and potassium isotopes by chemical exchange with zeolites. J Chem Phys 6:429–438Google Scholar
  87. Teng F-Z, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178Google Scholar
  88. Teng F-Z, Rudnick RL, McDonough WF, Gao S, Tomascak PB, Liu Y (2008) Lithium isotopic composition and concentration of the deep continental crust. Chem Geol 255:47–59Google Scholar
  89. Teng F-Z, Rudnick RL, McDonough WF, Wu F-Y (2009) Lithium isotopic systematics of A-type granites and their mafic enclaves: further constraints on the Li isotopic composition of the continental crust. Chem Geol 262:370–379Google Scholar
  90. Tomascak PB, Tera F, Helz RT, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multi-collector sector ICP-MS. Geochim Cosmochim Acta 63:907–910Google Scholar
  91. Tomascak PB, Langmuir CH, le Roux P, Shirey SB (2008) Lithium isotopes in global mid-ocean ridge basalts. Geochim Cosmochim Acta 72:1626–1637Google Scholar
  92. Tranter M (2003) Geochemical weathering in glacial and proglacial environments. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Pergamon, Oxford, pp 189–205Google Scholar
  93. Umeda M, Tuchiya K, Kawamura H, Hasegawa Y, Nanjo Y (2001) Preliminary characterization on Li isotope separation with Li ionic conductors. Fusion Technol 39:654–658Google Scholar
  94. US Geological survey (2009) Mineral commodity summaries 2009. U.S. Geological Survey, 195ppGoogle Scholar
  95. Vanneste H, Kelly-Gerreyn BA, Connelly DP, James RRH, Haeckel M, Fisher RE, Heeschen K, Mills RA (2010) Spatial variation in fluid flow and geochemical fluxes across the sediment-seawater interface at the Carlos Ribeiro mud volcano (Gulf of Cadiz). Geochim Cosmochim Acta 75(4):1124–1144Google Scholar
  96. Vigier N, Rollion-Bard C, Spezzaferri S, Brunet F (2007) In-situ measurements of Li isotopes in foraminifera. Geochem Geophys Geosyst Q01003. doi: 10.1029/2006GC001432 Google Scholar
  97. Vigier N, Decarreau A, Millot R, Carignan J, Petit S, France-Lanord C (2008) Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochim Cosmochim Acta 72:780–792Google Scholar
  98. Vigier N, Gislason SR, Burton KW, Millot R, Mokadem F (2009) The relationship between riverine lithium isotope composition and silicate weathering rates in Iceland. Earth Planet Sci Lett 287:434–441Google Scholar
  99. Vils F, Tonarini S, Kalt A, Seitz H-M (2009) Boron, lithium and strontium isotopes as tracers of seawater–serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209, Earth Planet. Sci Lett 286:414–425Google Scholar
  100. Wenger M, Armbruster T (1991) Crystal chemistry of lithium: oxygen coordination and bonding. Eur J Mineral 3:387–399Google Scholar
  101. Wheat CG, Mottl MJ (2000) Composition of pore and spring waters from Baby Bare: Global implications of geochemical fluxes from a ridge flank hydrothermal system. Geochim Cosmochim Acta 64:629–642Google Scholar
  102. Williams LB, Hervig RL (2005) Lithium and boron isotopes in illite-smectite: the importance of crystal size. Geochim Cosmochim Acta 24:5705–5716Google Scholar
  103. Wimpenny J, James RH, Burton KW, Gannoun A, Mokadem F, Gislason SR (2010a) Glacial effects on weathering processes: new insights from the elemental and lithium isotopic composition of West Greenland rivers. Earth Planet Sci Lett 290:427–437Google Scholar
  104. Wimpenny J, Gisalason SR, James RH, Gannoun A, Pogge von Strandmann PAE, Burton KW (2010b) The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochim Cosmochim Acta 74:5259–5279Google Scholar
  105. Witherow RA, Lyons WB, Henderson GM (2010) Lithium isotopic composition of the McMurdo Dry Valleys aquatic systems. Chem Geol 275:139–147Google Scholar
  106. Wunder B, Meixner A, Romer RL, Heinrich W (2006) Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol 151:112–120Google Scholar
  107. Yamaji K, Makita Y, Watanabe H, Sonoda A, Kanoh H, Hirotsu T, Ooi K (2001) Theoretical estimation of lithium reduced partition function ratio for lithium ions in aqueous solution. J Phys Chem A 105:602–613Google Scholar
  108. You C-F, Chan L-H (1996) Precise determination of lithium isotopic composition in low concentration natural samples. Geochim Cosmochim Acta 60:909–915Google Scholar
  109. You C-F, Chan L-H, Spivack AJ, Gieskes JM (1995) Lithium, boron and their isotopes in sediments and pore waters of Ocean Drilling Program Site 808, Nakai Trough: implications for fluid expulsion in accretionary prisms. Geology 23:37–40Google Scholar
  110. You CF, Gieskes JM, Lee T, Yui TF, Chen HW (2004) Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Appl Geochem 19:695–707Google Scholar
  111. Zhang L, Chan LH, Gieskes JM (1998) Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin. Geochim Cosmochim Acta 62:2437–2450Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Earth SciencesDurham University, Science LabsDurhamUK
  2. 2.CRPG-CNRS, Nancy UniversitéVandoeuvre-les-NancyFrance

Personalised recommendations