Advertisement

The N, O, S Isotopes of Oxy-Anions in Ice Cores and Polar Environments

  • Joël SavarinoEmail author
  • Samuel Morin
Chapter
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

For more than 60 years, ice from the polar caps has been used to unravel the evolution of our past climate and environment. Throughout technological improvements, climate researchers have gradually adapted their scientific tools to study the isotope content of the impurities present in it, with the hope to gather more and better information of the Earth’s shattered history. In this chapter, we present an overview of the techniques and studies which use stable isotope analysis to gain new insight. This domain has become so vast that we have limited our presentation to the recent analysis of the two major oxy-anions present in snow: sulfate and nitrate. These species are characteristic of the sulfur and nitrogen cycles. Describing the results obtained on ice without discussing the present atmosphere make little sense as ice is precisely used as a proxy for our past atmosphere. Consequently, beyond the analytical methods to measure the sulfur, nitrogen and oxygen isotopes of sulfate and nitrate, this chapter presents the results obtained at the interface between atmosphere, snow and ice with a focus on polar regions. The current state-of-the-art is presented for these two oxy-anions, including their non-mass-dependent isotope effects.

Keywords

Oxygen Isotope Sulfur Isotope Sulfur Isotopic Composition Thermal Ionization Mass Spectrometer Cavity Ring Down Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to Becky Alexander and Mark Thiemens for their exhaustive review which significantly improved the reading and the clarity of the manuscript. We also thank the Institut National des Sciences de l’Univers (CNRS/INSU) and the LEFE program for their continuous funding support. Equally, the strong support for the logistic operations in the difficult environment of Antarctica and through the funding program 1011 NITEDC of the Institut Polaire Paul Emile Victor (IPEV) is deeply acknowledged. JS acknowledges the support of the French Agence Nationale de la Recherche (ANR), under grants VOLSOL (NT09_431976) “Forçages climatiques naturels volcanique et solaire” and OPALE (NT09-451281) “Oxidant Production over Antarctica Land and its Export”. And last but not least, JS deeply wants to thank all undergraduates, PhD students and post-docs who spent countless hours to develop, measure and discuss data, always with enthusiasm and motivation. Some of the work presented here would not have been possible without their spirit.

References

  1. Alexander B, Savarino J, Barkov NI et al (2002) Climate driven changes in the oxidation pathways of atmospheric sulfur. Geophys Res Lett. doi: 10.1029/2002gl014879 CrossRefGoogle Scholar
  2. Alexander B, Thiemens MH, Farquhar J et al (2003) East Antarctic ice core sulfur isotope measurements over a complete glacial-interglacial cycle. J Geophys Res. doi: 10.1029/2003jd003513 CrossRefGoogle Scholar
  3. Alexander B, Savarino J, Kreutz KJ et al (2004) Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen. J Geophys Res. doi: 10.1029/2003jd004218 CrossRefGoogle Scholar
  4. Alexander B, Park RJ, Jacob DJ et al (2005) Sulfate formation in sea-salt aerosols: constraints from oxygen isotopes. J Geophys Res. doi: 10.1029/2004jd005659 CrossRefGoogle Scholar
  5. Alexander B, Park RJ, Jacob DJ et al (2009a) Transition metal-catalyzed oxidation of atmospheric sulfur: global implications for the sulfur budget. J Geophys Res. doi: 10.1029/2008jd010486 CrossRefGoogle Scholar
  6. Alexander B, Hastings MG, Allman DJ et al (2009b) Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (delta O-17) of atmospheric nitrate. Atmos Chem Phys. doi: 10.5194/acp-9-5043-2010 CrossRefGoogle Scholar
  7. Amberger A, Schmidt HL (1987) The natural isotope content of nitrate as an indicator of its origin. Geochim Cosmochim Acta 51:2699–2705Google Scholar
  8. Amoroso A, Domine F, Esposito G et al (2010) Microorganisms in dry polar snow are involved in the exchanges of reactive nitrogen species with the atmosphere. Environ Sci Technol. doi: 10.1021/es9027309 CrossRefGoogle Scholar
  9. Bailey SA, Smith JW (1972) Improved method for preparation of sulfur-dioxide from barium sulfate for isotope ratio studies. Anal Chem 44:1542–1543Google Scholar
  10. Bao HM, Marchant DR (2006) Quantifying sulfate components and their variations in soils of the McMurdo Dry Valleys, Antarctica. J Geophys Res. doi: 10.1029/2005jd006669 CrossRefGoogle Scholar
  11. Bao HM, Thiemens MH, Farquhar J et al (2000) Anomalous O-17 compositions in massive sulphate deposits on the Earth. Nature 406:176–178Google Scholar
  12. Bao HM, Michalski GM, Thiemens MH (2001) Sulfate oxygen-17 anomalies in desert varnishes. Geochim Cosmochim Acta 65:2029–2036Google Scholar
  13. Baroni M, Thiemens MH, Delmas RJ et al (2007) Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions. Science 315:84–87Google Scholar
  14. Baroni M, Savarino J, Cole-Dai JH et al (2008) Anomalous sulfur isotope compositions of volcanic sulfate over the last millennium in Antarctic ice cores. J Geophys Res. doi: 10.1029/2008jd010185 CrossRefGoogle Scholar
  15. Baublys KA, Golding SD, Young E et al (2004) Simultaneous determination of delta(33) SV-CDT and delta S-34(V-CDT) using masses 48, 49 and 50 on a continuous flow isotope ratio mass spectrometer. Rapid Commun Mass Spectrom. doi: 10.1002/rcm.1681 CrossRefGoogle Scholar
  16. Beaudoin G, Taylor BE (1994) High-precision and spatial-resolution sulfur isotope analysis using miles laser microprobe. Geochim Cosmochim Acta 58:5055–5063Google Scholar
  17. Bender M, Sowers T, Brook E (1997) Gases in ice cores. Proc Natl Acad Sci U S A 94:8343–8349Google Scholar
  18. Bhattacharya SK, Thiemens MH (1989) New evidence for symmetry dependent isotope effect: O + CO reaction. Z Naturforsch 44A:435–444Google Scholar
  19. Bhattacharya SK, Pandey A, Savarino J (2008) Determination of intramolecular isotope distribution of ozone by oxidation reaction with silver metal. J Geophys Res. doi: 10.1029/2006JD008309 CrossRefGoogle Scholar
  20. Bindeman IN, Eiler JM, Wing BA et al (2007) Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols. Geochim Cosmochim Acta. doi: 10.1016/j.gca.2007.01.026 CrossRefGoogle Scholar
  21. Blunier T, Floch GL, Jacobi HW et al (2005) Isotopic view on nitrate loss in Antarctic surface snow. Geophys Res Lett. doi: 10.1029/2005gl023011 CrossRefGoogle Scholar
  22. Böhlke JK, Mroczkowski SJ, Coplen TB (2003) Oxygen isotopes in nitrate: new reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration. Rapid Commun Mass Spectrom 17:1835–1846Google Scholar
  23. Böhlke JK, Smith RL, Hannon JE (2007) Isotopic analysis of N and O in nitrite and nitrate by sequential selective bacterial reduction to N2O. Anal Chem. doi: 10.1021/ac070176k CrossRefGoogle Scholar
  24. Bordat P, Freyer HD, Kobel K et al (1992) HPLC preparation of nitrate from ice cores for mass spectrometric N-15/N-14 measurements. Fresenius J Anal Chem 344:279–282Google Scholar
  25. Boschetti T, Iacumin P (2005) Continuous-flow delta O-18 measurements: new approach to standardization, high-temperature thermodynamic and sulfate analysis. Rapid Commun Mass Spectrom. doi: 10.1002/rcm.2161 CrossRefGoogle Scholar
  26. Brand WA, Coplen TB, Aerts-Bijma AT et al (2009) Comprehensive inter-laboratory calibration of reference materials for delta O-18 versus VSMOW using various on-line high-temperature conversion techniques. Rapid Commun Mass Spectrom. doi: 10.1002/rcm.3958 CrossRefGoogle Scholar
  27. Brauer K, Strauch G (2000) An alternative procedure for the O-18 measurement of nitrate oxygen. Chem Geol 168:283–290Google Scholar
  28. Bremner JM, Keeney DR (1965) Steam distillation methods for determination of ammonium nitrate and nitrite. Anal Chim Acta 32:485–490Google Scholar
  29. Bremner JM, Keeney DR (1966) Determination and isotope-ratio analysis of different forms of nitrogen in soils.3. Exchangeable ammonium nitrate and nitrite by extraction-distillation methods. Soil Sci Soc Am Proc 30:577–587Google Scholar
  30. Burkhart JF, Hutterli M, Bales RC et al (2004) Seasonal accumulation timing and preservation of nitrate in firn at Summit, Greenland. J Geophys Res. doi:19310.11029/12004JD004658Google Scholar
  31. Calhoun JA, Bates TS, Charlson RJ (1991) Sulfur isotope measurements of submicrometer sulfate aerosol particles over the Pacific Ocean. Geophys Res Lett 18:1877–1880Google Scholar
  32. Casciotti KL, Sigman DM, Hastings MG et al (2002) Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem. doi: 10.1021/ac020113w CrossRefGoogle Scholar
  33. Casciotti KL, Böhlke JK, McIlvin MR et al (2007) Oxygen isotopes in nitrite: analysis, calibration, and equilibration. Anal Chem. doi: 10.1021/ac061598h CrossRefGoogle Scholar
  34. Castleman AWJ, Munkelwitz HR, Manowitz B (1974) Isotopic studies of the sulfur component of the stratospheric aerosol layer. Tellus 26:222–234Google Scholar
  35. Chabala JM, Soni KK, Li J et al (1995) High-resolution chemical imaging with scanning ion probe SIMS. Int J Mass Spectrom Ion Process 143:191–212Google Scholar
  36. Chakraborty S, Chakraborty S (2003) Isotopic fractionation of the O-3-nitric oxide reaction. Curr Sci 85:1210–1212Google Scholar
  37. Chang CCY, Langston J, Riggs M et al (1999) A method for nitrate collection for delta N-15 and delta O-18 analysis from waters with low nitrate concentrations. Can J Fish Aquat Sci 56:1856–1864Google Scholar
  38. Chappellaz J, Fung IY, Thompson AM (1993) The atmospheric methane increase since the Last Glacial Maximum 1. Source estimates. Tellus 45B:228–241Google Scholar
  39. Cheng HH, Bremner JM (1966) Determination and isotope-ratio analysis of different forms of nitrogen in soils 2. A simplified procedure for isotope-ratio analysis of soil nitrogen. Soil Sci Soc Am Proc 30:450–454Google Scholar
  40. Chmura WM, Rozanski K, Kuc T et al (2009) Comparison of two methods for the determination of nitrogen and oxygen isotope composition of dissolved nitrates. Nukleonika 54:17–23Google Scholar
  41. Christensen S, Tiedje JM (1988) Sub-parts-per-billion nitrate method – use of an N2O-producing denitrifier to convert NO3- or (NO3-)-N-15 to N2O. Appl Environ Microbiol 54:1409–1413Google Scholar
  42. Cliff SS, Thiemens MH (1994) High-precision isotopic determination of the 18O/16O and 17O/16O ratios in nitrous oxide. Anal Chem 17:2791–2793Google Scholar
  43. Cole-Dai J, Ferris D, Lanciki A et al (2009) Cold decade (AD 1810-1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption. Geophys Res Lett. doi: 10.1029/2009gl040882 CrossRefGoogle Scholar
  44. Coleman ML, Moore MP (1978) Direct reduction of sulfates to sulfur-dioxide for isotopic analysis. Anal Chem 50:1594–1595Google Scholar
  45. Coplen TB, Böhke JK, Casciotti KL (2004) Using dual-bacterial denitrification to improve delta N-15 determinations of nitrates containing mass-independent 17O. Rapid Commun Mass Spectrom 18:245–250Google Scholar
  46. Cortecci G, Longinel A (1970) Isotopic composition of sulfate in rain water, Pisa, Italy. Earth Planet Sci Lett 8:36–40Google Scholar
  47. Cosme E, Hourdin F, Genthon C et al (2005) Origin of dimethylsulfide, non-sea-salt sulfate, and methanesulfonic acid in eastern Antarctica. J Geophys Res. doi:D0330210.1029/2004jd004881Google Scholar
  48. Craig H, Chou CC, Welhan JA et al (1988) The isotopic composition of methane in polar ice cores. Science 242:1535–1539Google Scholar
  49. Dansgaard W, Johnsen SJ, Moller J et al (1969) One thousand centuries of climatic record from camp century on Greenland ice sheet. Science 166:377–381Google Scholar
  50. De Angelis M, Petit JR, Savarino J et al (2004) Contributions of an ancient evaporitic-type reservoir to subglacial Lake Vostok chemistry. Earth Planet Sci Lett 222:751–765Google Scholar
  51. Dibb JE, Whitlow S (1996) Recent climate anomalie and their impact on snow chemistry at South Pole, 1987–1994. Geophys Res Lett 23:1115–1118Google Scholar
  52. Dibb JE, Whitlow SI, Arsenault M (2007) Seasonal variations in the soluble ion content of snow at Summit, Greenland: constraints from three years of daily surface snow samples. Atmos Environ. doi: 10.1016/j.atmosenv.2006.12.010 CrossRefGoogle Scholar
  53. Ding Y, Macko P, Romanini D et al (2004) High sensitivity cw-cavity ringdown and Fourier transform absorption spectroscopies of (CO2)-C-13. J Mol Spectrosc. doi: 10.1016/j.jms.2004.03.009 CrossRefGoogle Scholar
  54. Dominguez G, Jackson T, Brothers L et al (2008) Discovery and measurement of an isotopically distinct source of sulfate in Earth’s atmosphere. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0805255105 CrossRefGoogle Scholar
  55. Dubey MK, Mohrschladt R, Donahue NM et al (1997) Isotope specific kinetics of hydroxyl radical (OH) with water (H2O): testing models of reactivity and atmospheric fractionation. J Phys Chem 101:1494–1500Google Scholar
  56. Elliott EM, Kendall C, Wankel SD et al (2007) Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and northeastern United States. Environ Sci Technol. doi: 10.1021/es070898t CrossRefGoogle Scholar
  57. Farquhar J, Wing BA (2003) Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet Sci Lett. doi: 10.1016/s0012-821x(03)00296-6 CrossRefGoogle Scholar
  58. Farquhar J, Bao HM, Thiemens M (2000a) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758Google Scholar
  59. Farquhar J, Savarino J, Jackson TL et al (2000b) Evidence of atmospheric sulfur in the Martian regolith from sulfur isotopes in meteorites. Nature 404:50–52Google Scholar
  60. Farquhar J, Savarino J, Airieau S et al (2001) Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. J Geophys Res 106:32829–32839Google Scholar
  61. Farquhar J, Wing BA, McKeegan KD et al (2002) Mass-independent sulfur of inclusions in diamond and sulfur recycling on early earth. Science 298:2369–2372Google Scholar
  62. Fiedler R, Proksch G (1972) Determination of nitrogen content and nitrogen-15 abundance by means of nitrogen gas generated from inorganic and organic materials. Anal Chim Acta 60:277–285Google Scholar
  63. Fiedler R, Proksch G (1975) Determination of nitrogen-15 by emission and mass-spectrometry in biochemical analysis – review. Anal Chim Acta 78:1–62Google Scholar
  64. Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere: theory, experiments and applications. Academic, San DiegoGoogle Scholar
  65. Floch GL (2006) Composition isotopique du nitrate dans le névé Antarctique: Avançées et nouvelles perspectives sur les phénomènes post-dépôts. PhD dissertation, University of Bern, BernGoogle Scholar
  66. Frey MM, Stewart RW, McConnell JR, Bales RC (2005) Atmospheric hydroperoxides in West Antarctica: Links to stratospheric ozone and atmospheric oxidation capacity. Journal of Geophysical Research 110(D23), D23301, doi: 10.1029/2005jd006110Google Scholar
  67. Frey MM, Savarino J, Morin S et al (2009) Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling. Atmos Chem Phys. doi: 10.5194/acp-9-8681-2009 CrossRefGoogle Scholar
  68. Freyer HD (1978) Seasonal trends of NH4+ and NO3- nitrogen isotope composition in rain collected at Julich, Germany. Tellus 30:83–92Google Scholar
  69. Freyer HD (1991) Seasonal-variation of N-15-N-14 ratios in atmospheric nitrate species. Tellus 43B:30–44Google Scholar
  70. Freyer HD, Kley D, Volzthomas A et al (1993) On the interaction of isotopic exchange processes with photochemical-reactions in atmospheric oxides of nitrogen. J Geophys Res 98:14791–14796Google Scholar
  71. Freyer HD, Kobel K, Delmas RJ et al (1996) First results of N-15/N-14 ratios in nitrate from alpine and polar ice cores. Tellus 48B:93–105Google Scholar
  72. Friedli H, Moor E, Oeschger H et al (1984) C-13/C-12 ratios in CO2 extracted from Antarctic ice. Geophys Res Lett 11:1145–1148Google Scholar
  73. Fritzsche F, Tichomirowa M (2006) Signal improvement in elemental analyzer/continuous flow isotope ratio mass spectrometry for samples with low sulfur contents using a pre-concentration technique for on-line concentration adjustment. Rapid Commun Mass Spectrom. doi: 10.1002/rcm.2488 CrossRefGoogle Scholar
  74. Gao X, Thiemens MH (1993a) Variations of the isotopic composition of sulfur in enstatite and ordinary chondrites. Geochim Cosmochim Acta 57:3171–3176Google Scholar
  75. Gao X, Thiemens MH (1993b) Isotopic composition and concentration of sulfur in carbonaceous chondrites. Geochim Cosmochim Acta 57:3159–3169Google Scholar
  76. Giesemann A, Jager HJ, Norman AL et al (1994) Online sulfur-isotope determination using an elemental analyzer coupled to a mass-spectrometer. Anal Chem 66:2816–2819Google Scholar
  77. Granger J, Sigman DM (2009) Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method. Rapid Commun Mass Spectrom. doi: 10.1002/rcm.4307 CrossRefGoogle Scholar
  78. Granger J, Sigman DM, Prokopenko MG et al (2006) A method for nitrite removal in nitrate N and O isotope analyses. Limnol Oceanogr Methods 4:205–212Google Scholar
  79. Grannas AM, Jones AE, Dibb J et al (2007) An overview of snow photochemistry: evidence, mechanisms and impacts. Atmos Chem Phys. doi: 10.5194/acp-7-4329-2007 CrossRefGoogle Scholar
  80. Grassineau NV (2006) High-precision EA-IRMS analysis of S and C isotopes in geological materials. Appl Chem. doi: 10.1016/j.apgeochem.2006.02.015 CrossRefGoogle Scholar
  81. Grassineau NV, Mattey DP, Lowry D (2001) Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow-isotope ratio mass spectrometry. Anal Chem 73:220–225. doi: 10.1021/ac000550f CrossRefGoogle Scholar
  82. Gunther H, Floss HG, Simon H (1966) Ein vereinfachtes verfahren zur 15N-bestimmung. Fresenius Z Anal Chem 218:401–408Google Scholar
  83. Haan D, Martinerie P, Raynaud D (1996) Ice core data of atmospheric carbon monoxide over Antarctica and Greenland during the last 200 years. Geophys Res Lett 23:2235–2238Google Scholar
  84. Haberhauer G, Blochberger K (1999) A simple cleanup method for the isolation of nitrate from natural water samples for O isotope analysis. Anal Chem 71:3587–3590Google Scholar
  85. Halliday AN, Lee DC, Christensen JN et al (1998) Applications of multiple collector-ICPMS to cosmochemistry, geochemistry, and paleoceanography. Geochim Cosmochim Acta 62:919–940Google Scholar
  86. Hammer CU (1977) Past volcanism revealed by Greenland ice sheet impurities. Nature 270:482–486Google Scholar
  87. Hastings MG, Sigman DM, Lipschultz F (2003) Isotopic evidence for source changes of nitrate in rain at Bermuda. J Geophys Res. doi:1029/2003JD003789Google Scholar
  88. Hastings MG, Steig EJ, Sigman DM (2004) Seasonal variations in N and O isotopes of nitrate in snow at Summit, Greenland: implications for the study of nitrate in snow and ice cores. J Geophys Res. doi:10.1029/2004jd004991CrossRefGoogle Scholar
  89. Hastings MG, Sigman DM, Steig EJ (2005) Glacial/interglacial changes in the isotopes of nitrate from the Greenland Ice Sheet Project 2 (GISP2) ice core. Glob Biogeochem Cycles. doi:Gb4024, 10.1029/2005gb002502Google Scholar
  90. Hastings MG, Jarvis JC, Steig EJ (2009) Anthropogenic impacts on nitrogen isotopes of ice-core nitrate. Science 324:1288. doi:10.1126/science.1170510CrossRefGoogle Scholar
  91. Heaton THE (1987) N-15/N-14 ratios of nitrate and ammonium in rain at Pretoria, South-Africa. Atmos Environ 21:843–852Google Scholar
  92. Heaton THE, Wynn P, Tye AM (2004) Low N-15/N-14 ratios for nitrate in snow in the High Arctic (79 degrees N). Atmos Environ. doi: 10.1016/j.atmosphere.2004.06.028 CrossRefGoogle Scholar
  93. Heidenreich JE III, Thiemens MH (1986) A non-mass-dependent oxygen isotope effect in the production of ozone from molecular oxygen: the role of symmetry in isotope chemistry. J Chem Phys 84:2129–2136Google Scholar
  94. Hoering T (1955) Variations of nitrogen-15 abundance in naturally occurring substances. Science 122:1233–1234Google Scholar
  95. Hoering T (1957) The isotopic composition of the ammonia and the nitrate ion in rain. Geochim Cosmochim Acta 12:97–102Google Scholar
  96. Hojberg O, Johansen HS, Sorensen J (1994) Determination of N-15 abundance in nanogram pools of NO3- and NO2- by denitrification bioassay and mass-spectrometry. Appl Environ Microbiol 60:2467–2472Google Scholar
  97. Holt BD, Kumar R (1991) Oxygen isotope fractionation for understanding the sulphur cycle. In: Krouse HR, Grinenko VA (eds) Stable isotopes: natural and anthropogenic sulphur in the environment, vol 43, SCOPE. Wiley, New YorkGoogle Scholar
  98. Holt BD, Cunningham PT, Kumar R (1981) Oxygen isotopy of atmospheric sulfates. Environ Sci Technol 15:804–808Google Scholar
  99. Honrath RE, Peterson MC, Guo S et al (1999) Evidence of NOx production within or upon ice particles in the Greenland snowpack. Geophys Res Lett 26:695–698Google Scholar
  100. Hu GX, Rumble D, Wang PL (2003) An ultraviolet laser microprobe for the in situ analysis of multisulfur isotopes and its use in measuring Archean sulfur isotope mass-independent anomalies. Geochim Cosmochim Acta 67:3101–3118Google Scholar
  101. Huff AK, Thiemens MH (1998) O-17/O-16 and O-18/O-16 isotope measurements of atmospheric carbon monoxide and its sources. Geophys Res Lett 25:3509–3512Google Scholar
  102. Hulston JR, Thode HG (1965) Variations in S33 S34 and S36 contents of meteorites and their relation to chemical and nuclear effects. J Geophys Res 70:3475–3480Google Scholar
  103. Jacobi HW, Weller R, Jones AE et al (2000) Peroxyacetyl nitrate (PAN) concentrations in the Antarctic troposphere measured during the photochemical experiment at Neumayer (PEAN’99). Atmos Environ 34:5235–5247Google Scholar
  104. Jamieson RE, Wadleigh MA (1999) A study of the oxygen isotopic composition of precipitation sulphate in eastern Newfoundland. Water Air Soil Pollut 110:405–420Google Scholar
  105. Jamieson RE, Wadleigh MA (2000) Tracing sources of precipitation sulfate in eastern Canada using stable isotopes and trace metals. J Geophys Res 105:20549–20556Google Scholar
  106. Jarvis JC, Steig EJ, Hastings MG et al (2008) Influence of local photochemistry on isotopes of nitrate in Greenland snow. Geophys Res Lett. doi: 10.1029/2008gl035551 CrossRefGoogle Scholar
  107. Jarvis JC, Hastings MG, Steig EJ et al (2009) Isotopic ratios in gas-phase HNO3 and snow nitrate at Summit, Greenland. J Geophys Res. doi: 10.1029/2009jd012134 CrossRefGoogle Scholar
  108. Jenkins KA, Bao HM (2006) Multiple oxygen and sulfur isotope compositions of atmospheric sulfate in Baton Rouge, LA, USA. Atmos Environ. doi: 10.1016/j.atmosenv.2006.04.010 CrossRefGoogle Scholar
  109. Johnson CA, Mast MA, Kester CL (2001) Use of O-17/O-16 to trace atmospherically-deposited sulfate in surface waters: a case study in alpine watersheds in the Rocky Mountains. Geophys Res Lett 28:4483–4486Google Scholar
  110. Johnston JC, Thiemens MH (1997) The isotopic composition of tropospheric ozone in three environments. J Geophys Res 102:25395–25404Google Scholar
  111. Jones AE, Weller R, Wolff EW et al (2000) Speciation and rate of photochemical NO and NO2 production in Antarctic snow. Geophys Res Lett 27:345–348Google Scholar
  112. Jonsell U, Hansson ME, Morth CM et al (2005) Sulfur isotopic signals in two shallow ice cores from Dronning Maud Land, Antarctica. Tellus 57B:341–350Google Scholar
  113. Kaiser J, Hastings MG, Houlton BZ et al (2007) Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O. Anal Chem. doi: 10.1021/ac061022s CrossRefGoogle Scholar
  114. Kamber BS, Whitehouse MJ (2007) Micro-scale sulphur isotope evidence for sulphur cycling in the late Archean shallow ocean. Geobiology. doi: 10.1111/j.1472-4669.2006.00091.x CrossRefGoogle Scholar
  115. Karol IL, Frolkis VA, Kiselev AA (1995) Radiative-photochemical modeling of the annually averaged composition and temperature of the global atmosphere during the last glacial and interglacial periods. J Geophys Res 100:7291–7301Google Scholar
  116. Keeney DR, Bremner JM (1966) Determination and isotope-ratio analysis of different forms of nitrogen in soils.4. Exchangeable ammonium nitrate and nitrite by direct-distillation methods. Soil Sci Soc Am Proc 30:583–589Google Scholar
  117. Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Tracers in catchment hydrology. Elsevier Science, AmsterdamGoogle Scholar
  118. Kendall C, Grim E (1990) Combustion tube method for measurement of nitrogen isotope ratios using calcium-oxide for total removal of carbon-dioxide and water. Anal Chem 62:526–529Google Scholar
  119. Kiba T, Takagi T, Yoshimura Y et al (1955) Tin (II)-strong phosphoric acid – a new reagent for the determination of sulfate by reduction of hydrogen sulfide. Bull Chem Soc Jpn 28:641–644Google Scholar
  120. Komatsu DD, Ishimura T, Nakagawa F et al (2008) Determination of the N-15/N-14, O-17/O-16, and O-18/O-16 ratios of nitrous oxide by using continuous-flow isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom. doi: 10.1002/rcm.3493 CrossRefGoogle Scholar
  121. Kornexl B, Medina R, Schmidt HL (1994) A sensitive method for the fast and simultaneous determination of delta-N-15-values and delta-O-18-values in nitrate. Isotopenpraxis 30:215–218Google Scholar
  122. Kornexl BE, Gehre M, Hofling R et al (1999) On-line delta O-18 measurement of organic and inorganic substances. Rapid Commun Mass Spectrom 13:1685–1693Google Scholar
  123. Krankowsky D, Bartecki F, Klees GG et al (1995) Measurement of heavy isotope enrichment in tropospheric ozone. Geophys Res Lett 22:1713–1716Google Scholar
  124. Krankowsky D, Lammerzahl P, Mauersberger E (2000) Isotopic measurements of stratospheric ozone. Geophys Res Lett 27:2593–2595Google Scholar
  125. Kunasek SA, Alexander B, Steig EJ et al (2008a) Measurements and modeling of Delta O-17 of nitrate in snowpits from Summit, Greenland. J Geophys Res. doi: 10.1029/2008jd010103 CrossRefGoogle Scholar
  126. Kunasek SA, Alexander B, Steig EJ et al (2008b) Reinterpreting Delta O-17 of nitrate in ice cores at high accumulation sites. Geochim Cosmochim Acta 72:A502Google Scholar
  127. Kunasek SA, Alexander B, Steig EJ et al (2010) Sulfate sources and oxidation chemistry over the past 1230 years from sulfur and oxygen isotopes of sulfate in a West Antarctic ice core. J Geophys Res. doi: 10.1029/2010JD013846 CrossRefGoogle Scholar
  128. Lasaga AC, Otake T, Watanabe Y et al (2008) Anomalous fractionation of sulfur isotopes during heterogeneous reactions. Earth Planet Sci Lett. doi: 10.1016/j.epsl.2008.01.016 CrossRefGoogle Scholar
  129. Lee CCW, Thiemens MH (2001) δ17O and δ18O measurement of atmospheric sulfate from a coastal and high alpine region: a mass independent isotopic anomaly. J Geophys Res 106:17359–17374Google Scholar
  130. Lee CW, Savarino J, Thiemens MH (2001) Mass independent isotopic composition of atmospheric sulfate: origin and implications for the present and past atmosphere of Earth and Mars. Geophys Res Lett 28:1783–1786Google Scholar
  131. Lee CCW, Savarino J, Cachier H et al (2002) Sulfur (S-32, S-33, S-34, S-36) and oxygen (O-16, O-17, O-18) isotopic ratios of primary sulfate produced from combustion processes. Tellus 54B:193–200Google Scholar
  132. Legrand MR, Kirchner S (1990) Origins and variations of nitrate in south polar precipitation. J Geophys Res 95:3493–3507Google Scholar
  133. Legrand M, Mayewski P (1997) Glaciochemistry of polar ice cores: a review. Rev Geophys 35:219–243Google Scholar
  134. Legrand M, Preunkert S, Jourdain B et al (2009) Year-round record of surface ozone at coastal (Dumont d'Urville) and inland (Concordia) sites in East Antarctica. J Geophys Res. doi: 10.1029/2008jd011667 CrossRefGoogle Scholar
  135. Luz B, Barkan E (2005) The isotopic ratios O-17/O-16 and O-18/O-16 in molecular oxygen and their significance in biogeochemistry. Geochim Cosmochim Acta. doi: 10.1016/j.gca.2004.09.001 CrossRefGoogle Scholar
  136. Lyons JR (2007) Mass-independent fractionation of sulfur isotopes by isotope-selective photodissociation of SO2. Geophys Res Lett. doi:22810.21029/22007GL031031Google Scholar
  137. Mann JL, Kelly WR (2005) Measurement of sulfur isotope composition (delta S-34) by multiple-collector thermal ionization mass spectrometry using a S-33-S-36 double spike. Rapid Commun Mass Spectrom. doi:10.1002/rcm.2213CrossRefGoogle Scholar
  138. Mariotti A (1983) Atmospheric nitrogen is a reliable standard for natural N-15 abundance measurements. Nature 303:685–687Google Scholar
  139. Martin E, Bindeman I (2009) Mass-independent isotopic signatures of volcanic sulfate from three supereruption ash deposits in Lake Tecopa, California. Earth Planet Sci Lett. doi: 10.1016/j.epsl.2009.03.005 CrossRefGoogle Scholar
  140. Martinerie P, Brasseur GP, Granier C (1995) The chemical composition of ancient atmospheres: a model study constrained by ice core data. J Geophys Res 100:14, 291–214, 304Google Scholar
  141. Mather TA, McCabe JR, Rai VK et al (2006) Oxygen and sulphur isotope composition of volcanic sulphate aerosol at the point of emission. J Geophys Res. doi: 10.1029/2005JD006584 CrossRefGoogle Scholar
  142. Matthews DE, Hayes JM (1978) Isotope-ratio-monitoring gas chromatography-mass spectrometry. Anal Chem 50:1465–1473Google Scholar
  143. Mauersberger K (1987) Ozone isotope measurement in the stratosphere. Geophys Res Lett 14:80–83Google Scholar
  144. Mauersberger K, Lammerzahl P, Krankowsky D (2001) Stratospheric ozone isotope enrichments – revisited. Geophys Res Lett 28:3155–3158Google Scholar
  145. McCabe JR, Savarino J, Alexander B et al (2006) Isotopic constraints on non-photochemical sulfate production in the Arctic winter. Geophys Res Lett. doi: 10.1029/2005gl025164 CrossRefGoogle Scholar
  146. McCabe JR, Thiemens MH, Savarino J (2007) A record of ozone variability in South Pole Antarctic snow: role of nitrate oxygen isotopes. J Geophys Res. doi: 10.1029/2006jd007822 CrossRefGoogle Scholar
  147. McIlvin MR, Altabet MA (2005) Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal Chem. doi: 10.1021/ac050528s CrossRefGoogle Scholar
  148. McKinney CR, McCrea JM, Epstein S et al (1950) Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev Sci Instrum 21:724–730Google Scholar
  149. Metzger J (1978) Rapid simultaneous determination of N-15 and total nitrogen by direct coupling of mass-spectrometer and automatic elemental analyzer. Fresenius Z Anal Chem 292:44–45Google Scholar
  150. Michalski G (2010) Purification procedure for delta N-15, delta O-18, Delta O-17 analysis of nitrate. Int J Environ Anal Chem. doi: 10.1080/03067310902783593 CrossRefGoogle Scholar
  151. Michalski G, Bhattacharya SK (2009) The role of symmetry in the mass independent isotope effect in ozone. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0812755106 CrossRefGoogle Scholar
  152. Michalski G, Savarino J, Bohlke JK et al (2002) Determination of the total oxygen isotopic composition of nitrate and the calibration of a Delta O-17 nitrate reference material. Anal Chem. doi: 10.1021/ac0256282 CrossRefGoogle Scholar
  153. Michalski G, Scott Z, Kabiling M et al (2003) First measurements and modeling of Delta O-17 in atmospheric nitrate. Geophys Res Lett. doi: 10.1029/2003gl017015 CrossRefGoogle Scholar
  154. Michalski G, Böhlke JK, Thiemens M (2004a) Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions. Geochim Cosmochim Acta. doi: 10.1016/j.gca.2004.04.009 CrossRefGoogle Scholar
  155. Michalski G, Meixner T, Fenn M et al (2004b) Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using Δ17O. Environ Sci Technol. doi: 10.1021/es034980 CrossRefGoogle Scholar
  156. Michalski G, Rech J, Thiemens M (2005a) The onset of hyper-aridity in the Atacama Desert: nitrate Delta O-17 as a tracer of soil moisture. Geochim Cosmochim Acta 69:A444Google Scholar
  157. Michalski G, Bockheim JG, Kendall C et al (2005b) Isotopic composition of Antarctic Dry Valley nitrate: implications for NOy sources and cycling in Antarctica. Geophys Res Lett. doi: 10.1029/2004gl022121 CrossRefGoogle Scholar
  158. Miller CE, Yung YL (2000) Photo-induced isotopic fractionation. J Geophys Res 105:29039–29051Google Scholar
  159. Minagawa M, Winter DA, Kaplan IR (1984) Comparison of Kjeldahl and combustion methods for measurement of nitrogen isotope ratios in organic-matter. Anal Chem 56:1859–1861Google Scholar
  160. Mohn J, Guggenheim C, Tuzson B et al (2010) A liquid nitrogen-free preconcentration unit for measurements of ambient N2O isotopomers by QCLAS. Atmos Meas Tech 3:609–618Google Scholar
  161. Mojzsis SJ, Coath CD, Greenwood JP et al (2003) Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochim Cosmochim Acta. doi: 10.1016/s0016-7037(00)00059-0 CrossRefGoogle Scholar
  162. Moore H (1974) Isotopic measurement of atmospheric nitrogen-compounds. Tellus 26:169–174Google Scholar
  163. Moore H (1977) The isotopic composition of ammonia, nitrogen dioxide and nitrate in the atmosphere. Atmos Environ 11:1239–1243Google Scholar
  164. Morin S, Savarino J, Bekki S et al (2007) Signature of Arctic surface ozone depletion events in the isotope anomaly (Δ17O) of atmospheric nitrate. Atmos Chem Phys. doi: 10.5194/acp-7-1451-2007 CrossRefGoogle Scholar
  165. Morin S, Savarino J, Frey MM et al (2008) Tracing the origin and fate of NOx in the Arctic atmosphere using stable isotopes in nitrate. Science. doi: 10.1126/science.1161910 CrossRefGoogle Scholar
  166. Morin S, Savarino J, Frey MM et al (2009) Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean boundary layer from 65° S to 79° N. J Geophys Res. doi: 10.1029/2008jd010696 CrossRefGoogle Scholar
  167. Mulvaney R, Wagenbach D, Wolff EW (1998) Postdepositional change in snowpack nitrate from observation of year-round near-surface snow in coastal Antarctica. J Geophys Res 103:11021–11031Google Scholar
  168. Murphey BF (1947) The temperature variation of the thermal diffusion factors for binary mixtures of hydrogen, deuterium, and helium. Phys Rev 72:834–837Google Scholar
  169. Neubauer J, Heumann KG (1988) Determination of nitrate at the ng/g level in Antarctic snow samples with ion chromatography and isotope-dilution mass-spectrometry. Fresenius Z Anal Chem. doi: 10.1007/BF01105161 CrossRefGoogle Scholar
  170. Nevins JL, Altabet MA, McCarthy JJ (1985) Nitrogen isotope ratio analysis of small samples – sample preparation and calibration. Anal Chem 57:2143–2145Google Scholar
  171. Nier AO (1936) A mass-spectrographic study of the isotopes of argon, potassium, rubidium, zinc and cadmium. Phys Rev 50:1041–1045Google Scholar
  172. Nier AO (1940) A mass spectrometer for routine isotope abundance measurements. Rev Sci Instrum 11:212–216Google Scholar
  173. Nier AO (1947) A mass spectrometer for isotope and gas analysis. Rev Sci Instrum 18:398–411Google Scholar
  174. Ogawa Y, Nishikawa M, Nakasugi O et al (2001) Determination of the abundance of delta N-15 in nitrate ion in contaminated groundwater samples using an elemental analyzer coupled to a mass spectrometer. Analyst 126:1051–1054Google Scholar
  175. Ono S, Wing B, Rumble D et al (2006) High precision analysis of all four stable isotopes of sulfur (S-32, S-33, S-34 and S-36) at nanomole levels using a laser fluorination isotope-ratio-monitoring gas chromatography-mass spectrometry. Chem Geol. doi: 10.1016/j.chemgeo.2005.08.005 CrossRefGoogle Scholar
  176. Owens NJP (1988) Rapid and total automation of shipboard N-15 analysis – examples from the North-Sea. J Exp Mar Biol Ecol 122:163–171Google Scholar
  177. Owens NJP, Rees AP (1989) Determination of N-15 at submicrogram levels of nitrogen using automated continuous-flow isotope ratio mass-spectrometry. Analyst 114:1655–1657Google Scholar
  178. Papineau D, Mojzsis SJ, Coath CD et al (2005) Multiple sulfur isotopes of sulfides from sediments in the aftermath of Paleoproterozoic glaciations. Geochim Cosmochim Acta. doi: 10.1016/j.gca.2005.07.005 CrossRefGoogle Scholar
  179. Papineau D, Mojzsis SJ, Schmitt AK (2007) Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci Lett. doi: 10.1016/j.epsl.2006.12.015 CrossRefGoogle Scholar
  180. Parwel A, Ryhage R, Wickman FE (1957) Natural variations in the relative abundances of the nitrogen isotopes. Geochim Cosmochim Acta 11:165–170Google Scholar
  181. Patris N, Delmas RJ, Jouzel J (2000) Isotopic signatures of sulfur in shallow Antarctic ice cores. J Geophys Res 105:7071–7078Google Scholar
  182. Patris N, Delmas RJ, Legrand M et al (2002) First sulfur isotope measurements in central Greenland ice cores along the preindustrial and industrial periods. J Geophys Res. doi:4115, 10.1029/2001jd000672Google Scholar
  183. Patris N, Cliff SS, Quinn PK et al (2007) Isotopic analysis of aerosol sulfate and nitrate during ITCT-2k2: determination of different formation pathways as a function of particle size. J Geophys Res. doi:23310.21029/22005JD006214Google Scholar
  184. Pavlov AA, Mills MJ, Toon OB (2005) Mystery of the volcanic mass-independent sulfur isotope fractionation signature in the Antarctic ice core. Geophys Res Lett 32. doi:10.1029/2005gl022784Google Scholar
  185. Pepkowitz LP, Shirley EL (1951) Microdetection of sulfur. Anal Chem 23:1709–1710Google Scholar
  186. Pichlmayer F, Blochberger K (1988) Isotopic abundance analysis of carbon, nitrogen and sulfur with a combined elemental analyzer-mass spectrometer system. Fresenius Z Anal Chem 331:196–201Google Scholar
  187. Pichlmayer F, Schoner W, Seibert P et al (1998) Stable isotope analysis for characterization of pollutants at high elevation alpine sites. Atmos Environ 32:4075–4085Google Scholar
  188. Poulson SR (2005) The effect of sulfate-delta O-18 upon on-line sulfate-delta S-34 analysis, and implications for measurements of delta S-33 and Delta S-33. Rapid Commun Mass Spectrom. doi: 10.1002/rcm.1754 CrossRefGoogle Scholar
  189. Preston T, Owens NJP (1983) Interfacing an automatic elemental analyzer with an isotope ratio mass-spectrometer – the potential for fully automated total nitrogen and N-15 analysis. Analyst 108:971–977Google Scholar
  190. Preunkert S, Jourdain B, Legrand M et al (2008) Seasonality of sulfur species (dimethyl sulfide, sulfate, and methanesulfonate) in Antarctica: inland versus coastal regions. J Geophys Res-Atmospheres. doi: 10.1029/2008jd009937 CrossRefGoogle Scholar
  191. Pruett LE, Kreutz KJ, Wadleigh M et al (2004) Sulfur isotopic measurements from a West Antarctic ice core: implications for sulfate source and transport. Ann Glaciol 39:161–168Google Scholar
  192. Rafter TA (1967) Oxygen isotopic composition of sulphates.I. A method for extraction of oxygen and its quantative conversion to carbon dioxide for isotope radiation measurements. N Z J Sci 10:493–510Google Scholar
  193. Rai VK, Jackson TL, Thiemens MH (2005) Photochemical mass-independent sulfur isotopes in achondritic meteorites. Science 309:1062–1065Google Scholar
  194. Rees CE (1978) Sulfur isotope measurements using SO2 and SF6. Geochim Cosmochim Acta 42:383–389Google Scholar
  195. Rees CE, Jenkins WJ, Monster J (1978) Sulfur isotopic composition of ocean water sulfate. Geochim Cosmochim Acta 42:377–381Google Scholar
  196. Revesz K, Böhlke JK, Yoshinari T (1997) Determination of delta O-18 and delta N-15 in nitrate. Anal Chem 69:4375–4380Google Scholar
  197. Richet P, Bottinga Y, Javoy M (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine fractionation among gaseous molecules. Annu Rev Earth Planet Sci 5:65–110Google Scholar
  198. Rittenberg D, Ponticorvo L (1956) A method for the determination of the 18O is concentration of the oxygen of organic compounds. Int J Appl Radiat Isot 1:208–214Google Scholar
  199. Robinson BW, Kusakabe M (1975) Quantitative preparation of sulfur-dioxide, for S-34-S-32 analyses, from sulfides by combustion with cuprous-oxide. Anal Chem 47:1179–1181Google Scholar
  200. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219Google Scholar
  201. Röckmann T, Brenninkmeijer CAM, Saueressig G et al (1998) Mass-independent oxygen isotope fractionation in atmospheric CO as a result of the reaction CO + OH. Science 281:544–546Google Scholar
  202. Röthlisberger R, Hutterli MA, Wolff EW et al (2002) Nitrate in Greenland and Antarctic ice cores: a detailed description of post-depositional processes. Ann Glaciol 35:209–216Google Scholar
  203. Sander R, Rudich Y, von Glasow R et al (1999) The role of BrNO3 in marine tropospheric chemistry: a model study. Geophys Res Lett 26:2857–2860Google Scholar
  204. Sano M, Yotsui Y, Abe H et al (1976) New technique for detection of metabolites labeled by isotope C-13 using mass fragmentography. Biomed Mass Spectrom 3:1–3Google Scholar
  205. Savarino J, Thiemens MH (1999a) Analytical procedure to determine both δ18O and δ17O of H2O2 in natural water and first measurements. Atmos Environ 33:3683–3690Google Scholar
  206. Savarino J, Thiemens MH (1999b) Mass-independent oxygen isotope (16O, 17O, 18O) fractionation found in Hx, Ox reactions. J Phys Chem 103:9221–9229Google Scholar
  207. Savarino J, Lee CW, Thiemens MH (2000) Laboratory oxygen isotopic study of sulfur (IV) oxidation: origin of the mass independent oxygen isotopic anomaly in atmospheric sulfates and other sulfate mineral deposits. J Geophys Res 15:29079–29089Google Scholar
  208. Savarino J, Alexander B, Darmohusodo V et al (2001) Sulfur and oxygen isotope analysis of sulfate at micromole levels using a pyrolysis technique in a continuous flow system. Anal Chem. doi: 10.1021/ac010017f CrossRefGoogle Scholar
  209. Savarino J, Romero A, Cole-Dai J et al (2003) UV induced mass-independent sulfur isotope fractionation in stratospheric volcanic sulfate. Geophys Res Lett. doi: 10.1029/2003gl018134 CrossRefGoogle Scholar
  210. Savarino J, Kaiser J, Morin S et al (2007) Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica. Atmos Chem Phys. doi: 10.5194/acp-7-1925-2007 CrossRefGoogle Scholar
  211. Savarino J, Bhattacharya SK, Morin S et al (2008) The NO + O3 reaction: a triple oxygen isotope perspective on the reaction dynamics and atmospheric implications for the transfer of the ozone isotope anomaly. J Chem Phys. doi: 10.1063/1.2917581 CrossRefGoogle Scholar
  212. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics, 1st edn. Wiley, New YorkGoogle Scholar
  213. Shindell DT, Faluvegi G, Unger N et al (2006) Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI. Atmos Chem Phys. doi: 10.5194/acp-6-4427-2006 CrossRefGoogle Scholar
  214. Sigman DM, Casciotti KL, Andreani M et al (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153Google Scholar
  215. Silva JA, Bremner JM (1966) Determination and isotope-ratio analysis of different forms of nitrogen in soils.5. Fixed ammonium. Soil Sci Soc Am Proc 30:587–592Google Scholar
  216. Silva SR, Kendall C, Wilkison DH et al (2000) A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. J Hydrol 228:22–36Google Scholar
  217. Simpson WR, von Glasow R, Riedel K et al (2007) Halogens and their role in polar boundary-layer ozone depletion. Atmos Chem Phys. doi: 10.5194/acp-7-4375-2007 CrossRefGoogle Scholar
  218. Sowers T (2001) N2O record spanning the penultimate deglaciation from the Vostok ice core. J Geophys Res 106:31903–31914Google Scholar
  219. Sprinson DB, Rittenberg D (1949) The rate of utilization of ammonia for protein synthesis. J Biol Chem 180:707–714Google Scholar
  220. Thiemens MH (2006) History and applications of mass-independent isotope effects. Annu Rev Earth Planet Sci. doi: 10.1146/annurev.earth.34.031405.125026 CrossRefGoogle Scholar
  221. Thiemens MH, Heidenreich JE III (1983) The mass-independent fractionation of oxygen: a novel isotope effect and its possible cosmochemical implications. Science 219:1073–1075Google Scholar
  222. Thode HG, Monster J, Dunford HB (1961) Sulphur isotope geochemistry. Geochim Cosmochim Acta 25:159–174Google Scholar
  223. Thompson AM (1992) The oxidizing capacity of the Earth’s atmosphere – probable past and future changes. Science 256:1157–1165Google Scholar
  224. Thompson AM, Chappellaz JA, Fung IY et al (1993) The atmospheric CH4 increase since the last glacial maximum.2. Interactions with oxidants. Tellus 45B:242–257Google Scholar
  225. Udisti R, Becagli S, Benassai S et al (2004) Atmosphere-snow interaction by a comparison between aerosol and uppermost snow-layers composition at Dome C, East Antarctica. Ann Glaciol 39:53–61Google Scholar
  226. Ueda A, Krouse HR (1986) Direct conversion of sulfide and sulfate minerals to SO2 for isotope analyses. Geochem J 20:209–212Google Scholar
  227. Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc:562–581Google Scholar
  228. Valdes PJ, Beerling DJ, Johnson CE (2005) The ice age methane budget. Geophys Res Lett. doi: 02710.01029/02004GL021004Google Scholar
  229. Wadham JL, Hallam KR, Hawkins J et al (2006) Enhancement of snowpack inorganic nitrogen by aerosol debris. Tellus Series. doi:10.1111/j.1600-0889.2006.00180.xGoogle Scholar
  230. Wadleigh MA, Schwarcz HP, Kramer JR (1996) Isotopic evidence for the origin of sulphate in coastal rain. Tellus 48B:44–59Google Scholar
  231. Wadleigh MA, Schwarcz HP, Kramer JR (2001) A real distribution of sulphur and oxygen isotopes in sulphate of rain over eastern North America. J Geophys Res 106:20883–20895Google Scholar
  232. Wagenbach D, Legrand M, Fischer H et al (1998) Atmospheric near-surface nitrate at coastal Antarctic sites. J Geophys Res 103:11007–11020Google Scholar
  233. Wagnon P, Delmas RJ, Legrand M (1999) Loss of volatile acid species from the upper firn layers at Vostok, Antarctica. J Geophys Res 104:3423–3431Google Scholar
  234. Wang YH, Jacob DJ (1998) Anthropogenic forcing on tropospheric ozone and OH since preindustrial times. J Geophys Res 103:31123–31135Google Scholar
  235. Wassenaar LI (1995) Evaluation of the origin and fate of nitrate in the Abbotsford aquifer using the isotopes of N-15 and O-18 in NO3. Appl Chem 10:391–405Google Scholar
  236. Watanabe Y, Farquhar J, Ohmoto H (2009) Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction. Science. doi: 10.1126/science.1169289 CrossRefGoogle Scholar
  237. Werner RA, Bruch BA, Brand WA (1999) ConFlo III – an interface for high precision delta C-13 and delta N-15 analysis with an extended dynamic range. Rapid Commun Mass Spectrom 13:1237–1241Google Scholar
  238. Wolff E (1995) Nitrate in polar ice. In: Delmas R (ed) Ice core studies of global biogeochemical cycles, vol 30. Springer, New YorkGoogle Scholar
  239. Wynn PM, Hodson AJ, Heaton THE et al (2007) Nitrate production beneath a high Arctic glacier, Svalbard. Chem Geol. doi: 10.1016/j.chemgeo.2007.06.008 CrossRefGoogle Scholar
  240. Xue DM, De Baets B, Botte J et al (2010) Comparison of the silver nitrate and bacterial denitrification methods for the determination of nitrogen and oxygen isotope ratios of nitrate in surface water. Rapid Commun Mass Spectrom. doi: 10.1002/rcm.4445 CrossRefGoogle Scholar
  241. Yang L (2009) Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review. Mass Spectrom Rev. doi: 10.1002/mas.20251 CrossRefGoogle Scholar
  242. Yeatman SG, Spokes LJ, Dennis PF et al (2001) Comparisons of aerosol nitrogen isotopic composition at two polluted coastal sites. Atmos Environ 35:1307–1320Google Scholar
  243. Young E, Galy A, Nagahara H (2002) Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta 66:1095–1104Google Scholar
  244. Zielinski GA, Mayewski PA, Meeker LD et al (1994) Record of volcanism since 7000-BC from the GISP2 Greenland ice core and implications for the volcano-climate system. Science 264:948–952Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire de Glaciologie et Géophysique de l’EnvironnementUniversité Joseph FourierSt Martin d’HèresFrance
  2. 2.Institut National des Sciences de l’Univers, CNRSGrenobleFrance
  3. 3.Centre d’Études de la NeigeMétéo-France, CNRM-GAMESt Martin d’HèresFrance

Personalised recommendations