Fuzzy Feature-Based Upper Body Tracking with IP PTZ Camera Control

  • Parisa Darvish Zadeh Varcheie
  • Guillaume-Alexandre Bilodeau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

In this paper, we propose a fuzzy-feature based method for online upper body tracking using an IP PTZ camera. Because the camera uses a built-in web server, camera control entails camera response time and network delays, and thus, the frame rate is irregular and in general low (2-7 fps). It detects at every frame, candidate targets by extracting motion, a sampling method, and appearance. The target is detected among samples with a fuzzy classifier. Results show that our system has a good target detection precision (> 85%), low track fragmentation, and the target is almost always localized within 1/6th of the image diagonal from the image center.

References

  1. 1.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE T-PAMI 25(5), 564–577 (2003)Google Scholar
  2. 2.
    Leichter, I., Lindenbaum, M., Rivlin, E.: Bittracker- a bitmap tracker for visual tracking under very general conditions. IEEE T-PAMI 30(9), 1572–1588 (2008)Google Scholar
  3. 3.
    Roha, M., Kima, T., Park, J., Lee, S.: Accurate object contour tracking based on boundary edge selection. Pattern Recognition 40(3), 931–943 (2007)CrossRefGoogle Scholar
  4. 4.
    Elder, J.H., Prince, S., Hou, Y., Sizintsev, M., Olevsky, E.: Pre-attentive and attentive detection of humans in wide-field scenes. International Journal of Computer Vision 72(1), 47–66 (2007)CrossRefGoogle Scholar
  5. 5.
    Funahashi, T., Tominaga, M., Fujiwara, T., Koshimizu, H.: Hierarchical face tracking by using ptz camera. In: IEEE Int. Conf. on Automatic Face and Gesture Recognition (FGR), pp. 427–432 (2004)Google Scholar
  6. 6.
    Bernardin, K., Camp, F., Stiefelhagen, R.: Automatic person detection and tracking using fuzzy controlled active cameras. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)Google Scholar
  7. 7.
    Li, Y., Ai, H., Yamashita, T., Lao, S., Kawade, M.: Tracking in low frame rate video: a cascade particle filter with discriminative observers of different life spans. IEEE T-PAMI 30(10), 1728–1740 (2008)Google Scholar
  8. 8.
    Kang, S., Paik, J., Koschan, A., Abidi, B., Abidi, M.: Real-time video tracking using ptz cameras. In: 6th Int. Conf. on Quality Control by Artificial Vision, pp. 103–111 (2003)Google Scholar
  9. 9.
    Wikipedia: Von luschan’s chromatic scale — wikipedia, the free encyclopedia (2008), http://en.wikipedia.org/w/index.phptitle=Von_Luschan%27s_chromatic_sca%le&oldid=249213206 (Online; accessed June 9, 2009)
  10. 10.
    Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recognition 40(3), 1106–1122 (2007)MATHCrossRefGoogle Scholar
  11. 11.
    Cha, S.H., Srihari, S.N.: On measuring the distance between histograms. Pattern Recognition 35(6), 1355–1370 (2002)MATHCrossRefGoogle Scholar
  12. 12.
    Boufama, B., Ali, M.: Tracking multiple people in the context of video surveillance. In: Kamel, M.S., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 581–592. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Sony corporation: Snc-rz25n/p cgi command manual, version 1.0 (2005)Google Scholar
  14. 14.
    Yin, F., Makris, D., Velastin, S.: Performance evaluation of object tracking algorithms. In: IEEE Int. Workshop on Performance Evaluation of Tracking and Surveillance(PETS) (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Parisa Darvish Zadeh Varcheie
    • 1
  • Guillaume-Alexandre Bilodeau
    • 1
  1. 1.Department of Computer Engineering and Software EngineeringÉcole Polytechnique de MontréalCanada

Personalised recommendations