Measuring Cubeness of 3D Shapes

  • Carlos Martinez-Ortiz
  • Joviša Žunić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

In this paper we introduce a new measure for 3D shapes: cubeness. The new measure ranges over [0,1] and reaches 1 only when the given shapes is a cube. The new measure is invariant with respect to rotation, translation and scaling, and is also robust with respect to noise.

Keywords

3D shape compactness measure image processing 

References

  1. 1.
    Bribiesca, E.: A measure of compactness for 3d shapes. Comput. Math. Appl. 40, 1275–1284 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bribiesca, E.: An easy measure of compactness for 2d and 3d shapes. Pattern Recognition 41, 543–554 (2008)MATHCrossRefGoogle Scholar
  3. 3.
    Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A Search Engine for 3D Models. ACM Transactions on Graphics 22(1) (2003)Google Scholar
  4. 4.
    Mamistvalov, A.G.: n-Dimensional moment invariants and conceptual mathematical theory of recognition n-dimensional solids. IEEE Trans. Patt. Anal. Mach. Intell. 20, 819–831 (1998)CrossRefGoogle Scholar
  5. 5.
    Rahtu, E., Salo, M., Heikkila, J.: A new convexity measure based on a probabilistic interpretation of images. IEEE Trans. on Patt. Anal. and Mach. Intell. 28, 1501–1512 (2006)CrossRefGoogle Scholar
  6. 6.
    Rosin, P.L.: Measuring shape: ellipticity, rectangularity, and triangularity. Machine Vision and Applications 14, 172–184 (2003)Google Scholar
  7. 7.
    Rosin, P.L.: Measuring sigmoidality. Patt. Rec. 37, 1735–1744 (2004)CrossRefGoogle Scholar
  8. 8.
    Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S., Dickinson, S.: Retrieving articulated 3d models using medial surfaces. Machine Vision and Applications 19(4), 261–275 (2008)CrossRefGoogle Scholar
  9. 9.
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing: Analysis and Machine Vision. In: Thomson-Engineering (September 1998)Google Scholar
  10. 10.
    Stojmenović, M., Žunić, J.: Measuring elongation from shape boundary. Journal Mathematical Imaging and Vision 30, 73–85 (2008)CrossRefGoogle Scholar
  11. 11.
    Vranić, D.V., Saupe, D.: 3d shape descriptor based on 3d Fourier transform. In: Proceedings of the EURASIP Conference on Digital Signal Processing for Multimedia Communications and Services (ECMCS 2001), pp. 271–274 (2001)Google Scholar
  12. 12.
    Žunić, J., Hirota, K.: Measuring shape circularity. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 94–101. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Žunić, J., Rosin, P.L.: Rectilinearity measurements for polygons. IEEE Trans. on Patt. Anal. and Mach. Intell. 25, 1193–1200 (2003)CrossRefGoogle Scholar
  14. 14.
    Žunić, J., Hirota, K., Martinez-Ortiz, C.: Compactness Measure for 3D Shapes (Submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carlos Martinez-Ortiz
    • 1
  • Joviša Žunić
    • 1
  1. 1.Department of Computer ScienceUniversity of ExeterExeterU.K.

Personalised recommendations