A Fuzzy Segmentation Method for Images of Heat-Emitting Objects

  • Anna Fabijańska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

In this paper a problem of soft image segmentation is considered. An approach for segmenting images of heat-emitting specimens is introduced. Proposed algorithm is an extension of fuzzy C-means (FCM) clustering method. Results of applying the algorithm to exemplary images of heat-emitting specimens are presented and discussed. Moreover the comparison with results of standard fuzzy C-means clustering is provided.

Keywords

image segmentation fuzzy sets clustering methods FCM high-temperature measurement surface property of metal 

References

  1. 1.
    Gonzalez, R., Woods, E.: Image Processing. Prentice Hall, New Jersey (2007)Google Scholar
  2. 2.
    Liu, X., Wang, D.: Image and Texture Segmentation Using Local Spectral Histograms. IEEE Trans. Image Proc. 15(10), 3066–3077 (2006)CrossRefGoogle Scholar
  3. 3.
    Fan, J., Zengb, G., Bodyc, M., Hacidc, M.: Seeded region growing: an extensive and comparative study. Pattern Recognition Letters 26(8), 1139–1156 (2005)CrossRefGoogle Scholar
  4. 4.
    Silva, L., Bellon, O., Gotardo, P.: Edge-based image segmentation using curvature sign maps from reflectance and range images. In: IEEE Int. Conf. Image Processing, vol. 1, pp. 730–733 (2001)Google Scholar
  5. 5.
    Bo, S., Ma, Y., Zhu, C.: Image Segmentation by Nonparametric Color Clustering. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4489, pp. 898–901. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Haris, K., Efstratiadis, S., Maglaveras, N., Katsaggelos, A.: Hybrid image segmentation using watersheds and fast region merging. IEEE Trans. Image Proc. 7(12), 1684–1699 (1998)CrossRefGoogle Scholar
  7. 7.
    Zadeh, L.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Zadeh, L.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Systems 4(2), 103–111 (1996)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Tizhoosh, H.: Fuzzy ImageProcessing. Introduction in Theory and Practice. Springer, Berlin (1997)Google Scholar
  10. 10.
    Chi, Z., Yan, H., Pahm, T.: Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition. In: Advances in Fuzzy Systems. Applications and Theory, 10. World Scientific Pub. Co. Inc (1996)Google Scholar
  11. 11.
    Sankowski, D., Strzecha, K., Jeżewski, S.: Digital image analysis in measurement of surface tension and wet ability angle. In: Int. Conf. Modern Problems of Telecommunications, Computer Science and Engineers Training, Lviv-Slavskie, Ukraine, pp. 129–130 (2000)Google Scholar
  12. 12.
    Sankowski, D., Senkara, J., Strzecha, K., Jeżewski, S.: Automatic investigation of surface phenomena in high temperature solid and liquid contacts. In: IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, pp. 1397–1400 (2001)Google Scholar
  13. 13.
    Adamson, A., Gast, A.: Physical Chemistry of Surfaces. Wiley-Interscience, USA (1997)Google Scholar
  14. 14.
    Dunn, J.: A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact, Well Separated Clusters. J. Cyber. 3, 32–57 (1974)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)MATHGoogle Scholar
  16. 16.
    Ridler, T., Calvard, S.: Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cyb. 8, 630–632 (1978)CrossRefGoogle Scholar
  17. 17.
    Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman & Hall, London (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Anna Fabijańska
    • 1
  1. 1.Department of Computer EngineeringTechnical University of LodzLodzPoland

Personalised recommendations