Segmentation in 2D and 3D Image Using Tissue-Like P System

  • Hepzibah A. Christinal
  • Daniel Díaz-Pernil
  • Pedro Real Jurado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

Membrane Computing is a biologically inspired computational model. Its devices are called P systems and they perform computations by applying a finite set of rules in a synchronous, maximally parallel way. In this paper, we open a new research line: P systems are used in Computational Topology within the context of the Digital Image. We choose for this a variant of P systems, called tissue-like P systems, to obtain in a general maximally parallel manner the segmentation of 2D and 3D images in a constant number of steps. Finally, we use a software called Tissue Simulator to check these systems with some examples.

Keywords

Image Segmentation Output Cell Edge Pixel Natural Computing Membrane Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adleman, L.M.: Molecular computations of solutions to combinatorial problems. Science 226, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Rosenfeld, A.: Digital topology. American Mathematical Monthly 86, 621–630 (1979)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Rosenfeld, A.: Connectivity in Digital pictures. Journal for Association of Computing Machinery 17(1), 146–160 (1970)MATHMathSciNetGoogle Scholar
  4. 4.
    Chao, J., Nakayama, J.: Cubical Singular Simples Model for 3D Objects and Fast Computation of Homology Groups. In: Proceedings of ICPR 1996 IEEE, pp. 190–194 (1996)Google Scholar
  5. 5.
    Díaz-Pernil, D., Gutiérrez, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A uniform family of tissue P systems with cell division solving 3-COL in a linear time. Theoretical Computer Science 404, 76–87 (2008)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Díaz-Pernil, D., Pérez-Jiménez, M.J., Romero, A.: Efficient simulation of tissue-like P systems by transition cell-like P systems. Natural Computing, http://dx.doi.org/10.1007/s11047-008-9102-z
  7. 7.
    Wang, D., Lu*, H., Zhang, J., Liang, J.Z.: A Knowledge-Based Fuzzy Clustering Method with Adaptation Penalty for Bone Segmentation of CT images. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 6488–6491 (2005)Google Scholar
  8. 8.
    Holland, J.H.: Adaptation in Natural and Artificial Systems (1975)Google Scholar
  9. 9.
    Shapiro, L.G., Stockman, G.C.: Computer Vision (2001)Google Scholar
  10. 10.
    McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Sharmay, O., Miocz, D., Antony, F.: Polygon Feature Extraction from Satellite imagery based on color image segmentation and medial axis. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVII, 235–240 (2008)Google Scholar
  12. 12.
    Tobias, O.J., Seara, R.: Image Segmentation by Histogram Thresholding Using Fuzzy Sets. IEEE Transactions on Image Processing 11(12), 1457–1465 (2002)CrossRefGoogle Scholar
  13. 13.
    Martín-Vide, C., Pazos, J., Păun, G., Rodríguez-Patón, A.: A New Class of Symbolic Abstract Neural Nets: Tissue P Systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Martín-Vide, C., Pazos, J., Păun, G., Rodríguez Patón, A.: Tissue P systems. Theoretical Computer Science 296, 295–326 (2003)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61, 108–143 (2000)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Păun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)MATHGoogle Scholar
  17. 17.
    Păun, A., Păun, G.: The power of communication: P systems with symport/antiport. New Generation Computing 20(3), 295–305 (2002)MATHCrossRefGoogle Scholar
  18. 18.
    Păun, G.: Computing with Membranes: Attacking NP–complete Problems. In: Unconventional Models of Computation, UMC’2K, pp. 94–115. Springer, Heidelberg (2000)Google Scholar
  19. 19.
    Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Tissue P System with cell division. In Second Brainstorming Week on Membrane Computing, Sevilla, Report RGNC 01/2004, pp. 380–386 (2004)Google Scholar
  20. 20.
  21. 21.
    Kim, S.-H., Kim, H.-G., Tchah, K.-H.: Object oriented face detection using colour transformation and range segmentation. IEEE Electronics Letters 34, 979–980 (1998)CrossRefGoogle Scholar
  22. 22.
    Xiaojing, Y., Ning, S., George, Z.: A narrow band graph partitioning method for skin lesion segmentation. Elsevier Science Pattern Recognition 42(6), 1017–1028 (2009)MATHGoogle Scholar
  23. 23.
    Yazid, H., Arof, H.: Image Segmentation using Watershed Transformation for Facial Expression Recognition. IFMBE Proceedings, 4th Kuala Lumpur International Conference on Biomedical Engineering 21, 575–578 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hepzibah A. Christinal
    • 1
    • 2
  • Daniel Díaz-Pernil
    • 1
  • Pedro Real Jurado
    • 1
  1. 1.Research Group on Computational Topology and Applied MathematicsUniversity of SevillaSevillaSpain
  2. 2.Karunya UniversityCoimbatoreIndia

Personalised recommendations