A New Segmentation Approach for Old Fractured Pieces

  • Jesus Llanes
  • Antonio Adan
  • Santiago Salamanca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

In this paper we propose a method for characterizing the surface of fractured pieces which come from old and complete original objects. Natural fractured pieces are difficult to segment due to the fact that the faces and edges are not well defined. For this reason, standard local feature based approaches are clearly inefficient to make an efficient segmentation. Our segmentation procedure is based on the Cone Curvature (CC) concept applied over the original dense models which provide standard scanner modeling tools. This CC based-method allows us to explore the surface from multiple neighborhood levels and to find a compact segmentation solution which characterizes different parts of the piece. A wide experimentation has been carried out on a set of old fractured pieces belonging to the remains of roman sculptures.

Keywords

3D segmentation 3D shape analysis 3D data processing 

References

  1. 1.
    Haralick, R.M., Shapiro, L.G.: Image Segmentation Techniques. Computer Vision, Graphics, and Image Processing (January 1985)Google Scholar
  2. 2.
    Pal, N.R., Pal, S.K.: A Review on Image Segmentation Techniques. Pattern Recognition (1993)Google Scholar
  3. 3.
    Liu, H.K.: Two and Three Dimensional Boundary Detection. Computer Graphics and Image Processing (April 1977)Google Scholar
  4. 4.
    Herman, G.T., Liu, H.K.: Dynamic Boundary Surface Detection. Computer Graphics and Image Processing (1978)Google Scholar
  5. 5.
    Zucker, S.W., Hummel, R.A.: An Optimal Three- dimensional Edge Operator. Technical report, McGil University, Toronto, Ontario, Canada (April 1979)Google Scholar
  6. 6.
    Huang, Q.-X.: Reassembling Fractured Objects by Geometric Matching. ACM Transactions on Graphics (TOG) archive 25(3) (July 2006)Google Scholar
  7. 7.
    Pottman, H., Wallner, J., Huang, Q.-X., Yang, Y.: Integral invariants for robust geometry processing. Computer Aided Geometric Design 26, 37–60 (2009)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bellon, O., Silva, L.: New improvements to range image segmentation by edge detection. IEEE Signal Processing Letters 9(2), 43–45 (2002)CrossRefGoogle Scholar
  9. 9.
    Gotardo, P., Bellon, O., Boyer, K., Silva, L.: Range Image Segmentation Into Planar and Quadric Surfaces Using an Improved Robust Estimator and Genetic Algorithm. IEEE Transactions on Systems, Man and Cybernetics. Part B, Cybernetics 34(6), 2303–2316 (2004)CrossRefGoogle Scholar
  10. 10.
    Papaioannou, G., Karabassi, E.-A., Theoharis, T.: Virtual Archaeologist, Assembling the Past. IEEE, Computer Graphics and Applications 21, 53–59 (2001)CrossRefGoogle Scholar
  11. 11.
    Papaioannou, G., Karabassi, E.-A., Theoharis, T.: Reconstruction of three-dimensional objects through matching of their parts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(1), 114–124 (2002)CrossRefGoogle Scholar
  12. 12.
    Papaioannou, G., Karabassi, E.-A.: Automatic Reconstruction of Archaeological Finds – A Graphics Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(1), 114–124 (2002)CrossRefGoogle Scholar
  13. 13.
    Adán, A., Adán, M.: A Flexible Similarity Measure for 3D Shapes Recognition. IEEE Transactions on Pattern Analysis and Machine Inteligence 26(11) (November 2004)Google Scholar
  14. 14.
    Adán, A., Adán, M., Salamanca, S., Merchán, P.: Using Non Local Features For 3D Shape Grouping. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSSPR 2008. LNCS, vol. 5342, pp. 644–653. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jesus Llanes
    • 1
  • Antonio Adan
    • 1
  • Santiago Salamanca
    • 2
  1. 1.Escuela Superior de InformáticaUniversidad de Castilla-La ManchaCiudad RealSpain
  2. 2.Escuela de Ingenierías IndustrialesUniversidad de ExtremaduraBadajozSpain

Personalised recommendations