Optimal Partial Tiling of Manhattan Polyominoes
Conference paper
Abstract
Finding an efficient optimal partial tiling algorithm is still an open problem. We have worked on a special case, the tiling of Manhattan polyominoes with dominoes, for which we give an algorithm linear in the number of columns. Some techniques are borrowed from traditional graph optimisation problems.
Keywords
Bipartite Graph Greedy Algorithm Combinatorial Group Theory Tiling Problem Domino Tiling
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full conference paper text
References
- 1.Bodini, O., Latapy, M.: Generalized Tilings with Height Functions. Morfismos 7 3 (2003)Google Scholar
- 2.Bougé, L., Cosnard, M.: Recouvrement d’une pièce trapézoidale par des dominos, C. R. Académie des Sciences Paris 315, Série I, pp. 221–226 (1992)Google Scholar
- 3.Bodini, O., Fernique, T.: Planar Tilings. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 104–113. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 4.Conway, J.H., Lagarias, J.C.: Tiling with polyominoes and combinatorial group theory. JCT Series A 53, pp. 183–208 (1990)Google Scholar
- 5.Ford, L.R., Fulkerson, D.R.: Maximal Flow through a Network. Canadian Journal of Mathematics, 399 (1956)Google Scholar
- 6.Fournier, J.C.: Tiling pictures of the plane with dominoes. Discrete Mathematics 165/166, 313–320 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 7.Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM J. Comput. 18(5), 1013–1036 (1989)MathSciNetCrossRefMATHGoogle Scholar
- 8.Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)MathSciNetCrossRefMATHGoogle Scholar
- 9.Ito, K.: Domino tilings on planar regions. J.C.T. Series A 75, pp. 173–186 (1996)Google Scholar
- 10.Kenyon, R.: A note on tiling with integer-sided rectangles. JCT Series A 74, pp. 321–332 (1996)Google Scholar
- 11.Rémila, E.: The lattice structure of the set of domino tilings of a polygon. Theoretical Computer Science 322(2), 409–422 (2004)MathSciNetCrossRefMATHGoogle Scholar
- 12.Thiant, N.: An O (n log n)-algorithm for finding a domino tiling of a plane picture whose number of holes is bounded. Theoretical Computer Science 303(2-3), 353–374 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 13.Thurston, W.P.: Conway’s tiling groups. American Mathematics Monthly 95, 757–773 (1990)MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2009