On Three Constrained Versions of the Digital Circular Arc Recognition Problem

  • Tristan Roussillon
  • Laure Tougne
  • Isabelle Sivignon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5810)

Abstract

In this paper, the problem of digital circular arcs recognition is investigated in a new way. The main contribution is a simple and linear-time algorithm for solving three subproblems: online recognition of digital circular arcs coming from the digitization of a disk having either a given radius, a boundary that is incident to a given point, or a center that is on a given straight line. Solving these subproblems is interesting in itself, but also for the recognition of digital circular arcs. The proposed algorithm can be iteratively used for this problem. Moreover, since the algorithm is online, it provides a way to segment digital curves.

Keywords

Outer Point Elementary Part Digital Point Euclidean Disk Online Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Buzer, L.: A Linear Incremental Algorithm for Naive and Standard Digital Lines and Planes Recognition. Graphical Model 65, 61–76 (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Coeurjolly, D., Gérard, Y., Reveillès, J.-P., Tougne, L.: An Elementary Algorithm for Digital Arc Segmentation. Discrete Applied Mathematics 139(1-3), 31–50 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Damaschke, P.: The Linear Time Recognition of Digital Arcs. Pattern Recognition Letters 16, 543–548 (1995)CrossRefMATHGoogle Scholar
  4. 4.
    de Berg, M., van Kreveld, M., Overmars, M., Scharzkopf, O.: Computation geometry, algorithms and applications. Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Efrat, A., Gotsman, C.: Subpixel Image Registration Using Circular Fiducials. International Journal of Computational Geometry & Applications 4(4), 403–422 (1994)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fisk, S.: Separating Points Sets by Circles, and the Recognition of Digital Disks. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 554–556 (1986)CrossRefGoogle Scholar
  7. 7.
    Kim, C.E.: Digital Disks. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(3), 372–374 (1984)CrossRefMATHGoogle Scholar
  8. 8.
    Kim, C.E., Anderson, T.A.: Digital Disks and a Digital Compactness Measure. In: Annual ACM Symposium on Theory of Computing, pp. 117–124 (1984)Google Scholar
  9. 9.
    Kovalevsky, V.A.: New Definition and Fast Recognition of Digital Straight Segments and Arcs. In: Internation Conference on Pattern Analysis and Machine Intelligence, pp. 31–34 (1990)Google Scholar
  10. 10.
    Megiddo, N.: Linear Programming in Linear Time When the Dimension Is Fixed. SIAM Journal on Computing 31, 114–127 (1984)MathSciNetMATHGoogle Scholar
  11. 11.
    O’Rourke, J., Kosaraju, S.R., Meggido, N.: Computing Circular Separability. Discrete and Computational Geometry 1, 105–113 (1986)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Pham, S.: Digital Circles With Non-Lattice Point Centers. The Visual Computer 9, 1–24 (1992)CrossRefGoogle Scholar
  13. 13.
    Preparata, F.P., Shamos, M.I.: Computational geometry: an introduction. Springer, Heidelberg (1985)CrossRefMATHGoogle Scholar
  14. 14.
    Roussillon, T., Sivignon, I., Tougne, L.: Test of Circularity and Measure of Circularity for Digital Curves. In: International Conference on Image Processing and Computer Vision, pp. 518–524 (2008)Google Scholar
  15. 15.
    Roussillon, T., Sivignon, I., Tougne, L.: On-Line Recognition of Digital Arcs. Technical report, RR-LIRIS-2009-008 (2009)Google Scholar
  16. 16.
    Sauer, P.: On the Recognition of Digital Circles in Linear Time. Computational Geometry 2(5), 287–302 (1993)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tristan Roussillon
    • 1
  • Laure Tougne
    • 1
  • Isabelle Sivignon
    • 2
  1. 1.LIRIS, UMR5205Université de Lyon, Université Lyon 2France
  2. 2.LIRIS, UMR5205Université de Lyon, CNRS, Université Lyon 1France

Personalised recommendations