Advertisement

A Statistical Model of Right Ventricle in Tetralogy of Fallot for Prediction of Remodelling and Therapy Planning

  • Tommaso Mansi
  • Stanley Durrleman
  • Boris Bernhardt
  • Maxime Sermesant
  • Hervé Delingette
  • Ingmar Voigt
  • Philipp Lurz
  • Andrew M. Taylor
  • Julie Blanc
  • Younes Boudjemline
  • Xavier Pennec
  • Nicholas Ayache
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5761)

Abstract

Patients with repaired Tetralogy of Fallot commonly suffer from chronic pulmonary valve regurgitations and extremely dilated right ventricle (RV). To reduce risk factors, new pulmonary valves must be re-implanted. However, establishing the best timing for re-intervention is a clinical challenge because of the large variability in RV shape and in pathology evolution. This study aims at quantifying the regional impacts of growth and regurgitations upon the end-diastolic RV anatomy. The ultimate goal is to determine, among clinical variables, predictors for the shape in order to build a statistical model that predicts RV remodelling. The proposed approach relies on a forward model based on currents and LDDMM algorithm to estimate an unbiased template of 18 patients and the deformations towards each individual shape. Cross-sectional multivariate analyses are carried out to assess the effects of body surface area, tricuspid and transpulmonary valve regurgitations upon the RV shape. The statistically significant deformation modes were found clinically relevant. Canonical correlation analysis yielded a generative model that was successfully tested on two new patients.

Keywords

Body Surface Area Right Ventricle Deformation Mode Pulmonary Valve Canonical Correlation Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Supplementary material (930 KB)

Supplementary material(2,258 KB)

Supplementary material(1,848 KB)

Supplementary material(2,549 KB)

Supplementary material(2,338 KB)

References

  1. 1.
    Geva, T.: Indications and timing of pulmonary valve replacement after tetralogy of Fallot repair. In: Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual, vol. 9, pp. 11–22. Elsevier, Amsterdam (2006)Google Scholar
  2. 2.
    Sheehan, F., Ge, S., Vick III, G., Urnes, K., Kerwin, W., Bolson, E., Chung, T., Kovalchin, J., Sahn, D., Jerosch-Herold, M., et al.: Three-Dimensional Shape Analysis of Right Ventricular Remodeling in Repaired Tetralogy of Fallot. The American Journal of Cardiology 101(1), 107 (2008)CrossRefGoogle Scholar
  3. 3.
    Zhang, H., Walker, N., Mitchell, S., Thomas, M., Wahle, A., Scholz, T., Sonka, M.: Analysis of four-dimensional cardiac ventricular magnetic resonance images using statistical models of ventricular shape and cardiac motion. In: Proc. SPIE 2006, vol. 6143, p. 614307 (2006)Google Scholar
  4. 4.
    Guimond, A., Meunier, J., Thirion, J.P.: Average brain models: A convergence study. Computer Vision and Image Understanding 77(2), 192–210 (2000)CrossRefGoogle Scholar
  5. 5.
    Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23, 151–160 (2004)CrossRefGoogle Scholar
  6. 6.
    Allassonniere, S., Amit, Y., Trouve, A.: Towards a coherent statistical framework for dense deformable template estimation. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69(1), 3–29 (2007)MathSciNetGoogle Scholar
  7. 7.
    Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: A forward model to build unbiased atlases from curves and surfaces. In: Pennec, X., Joshi, S. (eds.) Proc. of the International Workshop on the Mathematical Foundations of Computational Anatomy, MFCA 2008 (2008)Google Scholar
  8. 8.
    Vaillant, M., Glaunès, J.: Surface matching via currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Fast automatic heart chamber segmentation from 3D CT data using marginal space learning and steerable features. In: Proc. ICCV 2007, pp. 1–8 (2007)Google Scholar
  10. 10.
    Jian, B., Vemuri, B.: A robust algorithm for point set registration using mixture of Gaussians. In: Proc. ICCV 2005, vol. 2, pp. 1246–1251 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tommaso Mansi
    • 1
  • Stanley Durrleman
    • 1
  • Boris Bernhardt
    • 2
  • Maxime Sermesant
    • 1
  • Hervé Delingette
    • 1
  • Ingmar Voigt
    • 3
  • Philipp Lurz
    • 4
  • Andrew M. Taylor
    • 4
  • Julie Blanc
    • 5
  • Younes Boudjemline
    • 5
  • Xavier Pennec
    • 1
  • Nicholas Ayache
    • 1
  1. 1.Asclepios ProjectINRIA-MéditerranéeSophia AntipolisFrance
  2. 2.Neuroimaging of Epilepsy LaboratoryMcGill University, Montreal Neurological InstituteQuebecCanada
  3. 3.Siemens AG, CT SE 5 SCR2, Erlangen, Germany & Chair of Pattern RecognitionUniversity of Erlangen-NurembergErlangenGermany
  4. 4.UCL Institute of Child Health & Great Ormond Street Hospital for ChildrenLondonUnited Kingdom
  5. 5.Service de Cardiologie PédiatriqueHôpital Necker-Enfants MaladesParisFrance

Personalised recommendations