Toward Video-Based Navigation for Endoscopic Endonasal Skull Base Surgery

  • Daniel Mirota
  • Hanzi Wang
  • Russell H. Taylor
  • Masaru Ishii
  • Gregory D. Hager
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5761)


Endoscopic endonasal skull base surgery (ESBS) requires high accuracy to ensure safe navigation of the critical anatomy at the anterior skull base. Current navigation systems provide approximately 2mm accuracy. This level of registration error is due in part from the indirect nature of tracking used. We propose a method to directly track the position of the endoscope using video data. Our method first reconstructs image feature points from video in 3D, and then registers the reconstructed point cloud to pre-operative data (e.g. CT/MRI). After the initial registration, the system tracks image features and maintains the 2D-3D correspondence of image features and 3D locations. These data are then used to update the current camera pose. We present registration results within 1mm, which matches the accuracy of our validation framework.

Supplementary material

Supplementary material(5,068 KB)


  1. 1.
    Nasseri, S.S., Kasperbauer, J.L., Strome, S.E., McCaffrey, T.V., Atkinson, J.L., Meyer, F.B.: Endoscopic transnasal pituitary surgery: Report on 180 cases. American Journal of Rhinology 15(4), 281–287 (2001)Google Scholar
  2. 2.
    Chassat, F., Lavallée, S.: Experimental protocol of accuracy evaluation of 6-D localizers for computer-integrated surgery: Application to four optical localizers. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 277–284. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Shahidi, R., Bax, M., Maurer, C.R., Johnson, J., Wilkinson, E., Wang, B., West, J., Citardi, M., Manwaring, K., Khadem, R.: Implementation, calibration and accuracy testing of an image-enhanced endoscopy system. Med. Imag., IEEE Trans. 21(12), 1524–1535 (2002)CrossRefGoogle Scholar
  4. 4.
    Lapeer, R., Chen, M.S., Gonzalez, G., Linney, A., Alusi, G.: Image-enhanced surgical navigation for endoscopic sinus surgery: evaluating calibration, registration and tracking. Intl. J. of Med. Rob. and Comp. Assisted Surg. 4(1), 32–45 (2008)CrossRefGoogle Scholar
  5. 5.
    Helferty, J.P., Hoffman, E.A., McLennan, G., Higgins, W.E.: CT-video registration accuracy for virtual guidance of bronchoscopy. In: SPIE Med. Imaging, vol. 5369, pp. 150–164 (2004)Google Scholar
  6. 6.
    Burschka, D., Li, M., Ishii, M., Taylor, R.H., Hager, G.D.: Scale-invariant registration of monocular endoscopic images to CT-scans for sinus surgery. MIA 9, 413–426 (2005)Google Scholar
  7. 7.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 20, 91–110 (2003)Google Scholar
  8. 8.
    Vedaldi, A.: SIFT for matlab, (last accessed May 29, 2009)
  9. 9.
    Delponte, E., Isgr, F., Odone, F., Verri, A.: SVD-matching using SIFT features. In: Proc. of the Intl. Conf. on Vision, Video and Graphics, July 2005, pp. 125–132 (2005)Google Scholar
  10. 10.
    Wang, H., Mirota, D., Ishii, M., Hager, G.: Robust motion estimation and structure recovery from endoscopic image sequences with an Adaptive Scale Kernel Consensus estimator. In: CVPR. IEEE Conf. on, June 2008, pp. 1–7 (2008)Google Scholar
  11. 11.
    Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. PAMI 26(6), 756–770 (2004)CrossRefGoogle Scholar
  12. 12.
    Mirota, D., Taylor, R.H., Ishii, M., Hager, G.D.: Direct endoscopic video registration for sinus surgery. In: Medical Imaging 2009: Visualization, Image-guided Procedures and Modeling, Proc. of the SPIE, February 2009, vol. 7261, pp. 72612K–1,72612K–8 (2009)Google Scholar
  13. 13.
    Chetverikov, D., Svirko, D., Stepanov, D., Krsek, P.: The trimmed iterative closest point algorithm. ICPR 3, 545–548 (2002)Google Scholar
  14. 14.
    Du, S., Zheng, N., Ying, S., You, Q., Wu, Y.: An extension of the ICP algorithm considering scale factor. ICIP 5, 193–196 (2007)Google Scholar
  15. 15.
    Lu, C.P., Hager, G., Mjolsness, E.: Fast and globally convergent pose estimation from video images. PAMI, IEEE Trans. 22(6), 610–622 (2000)CrossRefGoogle Scholar
  16. 16.
    Bouget, J.Y.: The matlab camera calibration toolkit, (last accessed, March 3 2008)
  17. 17.
    Park, F., Martin, B.: Robot sensor calibration: solving AX=XB on the Euclidean group. IEEE Transactions on Robotics and Automation 10(5), 717–721 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniel Mirota
    • 1
  • Hanzi Wang
    • 2
  • Russell H. Taylor
    • 1
  • Masaru Ishii
    • 3
  • Gregory D. Hager
    • 1
  1. 1.Department of Computer ScienceThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.School of Computer ScienceThe University of AdelaideAustralia
  3. 3.Department of OtolaryngologyJohns Hopkins Medical InstitutionsBaltimoreUSA

Personalised recommendations