Video Background Segmentation Using Adaptive Background Models

  • Xiaoyu Wu
  • Yangsheng Wang
  • Jituo Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

This paper proposes an adaptive background model which combines the advantages of both Eigenbackground and pixel-based gaussian models. This method exploits the illumination changes by Eigenbackground. Moreover, it can detect the chroma changes and remove shadow pixels using gaussian models. An adaptively strategy is used to integrate two models. A binary graph cut is used to implement the foreground/background segmentation by developing our data term and smooth term. We validate our method on indoor videos and test it on the benchmark video. Experiments demonstrate our method’s efficiency.

Keywords

Background modeling Background segmentation Adaptive graph cut 

References

  1. 1.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 246–252 (1999)Google Scholar
  2. 2.
    Haritaoglu, I., Harwood, D., Davis, L.S.: W4s: A Real-Time System for Detecting and Tracking People in 2 1/2 D. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (1998)Google Scholar
  3. 3.
    Elgammal, A., Harwood, D., Davis, L.: Non-parametric Model for Background Subtraction. In: Proceedings of International Conference on Computer Vision, pp. 751–767 (1999)Google Scholar
  4. 4.
    Han, B., Comaniciu, D., Davis, L.: Sequential kernel density approximation through mode propagation: applications to background modeling. In: Asian Conference on Computer Vision, pp. 922–929 (2005)Google Scholar
  5. 5.
    Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: Real-Time Tracking of the Human Body. In: W4s: A Real-Time System for Detecting and Tracking People in 2 1/2 D, pp. 780–785 (1997)Google Scholar
  6. 6.
    Oliver, N., Rosario, B., Pentland, A.: A Bayesian Computer Vision System for Modeling Human Interactions. In: Int’l Conf. on Vision Systems, Gran Canaria, Spain (1999)Google Scholar
  7. 7.
    Schindler, K., Wang, H.: Smooth foreground-background segmentation for video processing. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 581–590. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Boykov, Y., Jolly, P.M.: Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-d Images. In: ICCV, pp. 102–112 (2001)Google Scholar
  9. 9.
    Sun, J., Zhang, W., Tang, X., Shum, H.Y.: Background cut. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 628–641. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Kohli, P., Torr, P.H.S.: Efficiently solving dynamic Markov Random Fields Using Graph cuts. In: IEEE ICCV, pp. 922–929 (2005)Google Scholar
  11. 11.
    Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: Proceedings of International Conference on Computer Vision, pp. 255–261 (1999)Google Scholar
  12. 12.
    Criminisi, A., Cross, G., Blake, A., Kolmogorov, V.: Bilayer Segmentation of Live Video. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 53–60 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Xiaoyu Wu
    • 1
  • Yangsheng Wang
    • 1
  • Jituo Li
    • 1
  1. 1.Institute of AutomationChinese Academy of SciencesChina

Personalised recommendations