Automatic Estimation of the Inlier Threshold in Robust Multiple Structures Fitting

  • Roberto Toldo
  • Andrea Fusiello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

This paper tackles the problem of estimating the inlier threshold in RANSAC-like approaches to multiple models fitting. An iterative approach finds the maximum of a score function which resembles the Silhouette index used in clustering validation. Although several methods have been proposed to solve this problem for the single model case, this is the first attempt to address multiple models. Experimental results demonstrate the performances of the algorithm.

Keywords

Multiple Model Cluster Validation Scale Estimation Inlier Point Automatic Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Xu, L., Oja, E., Kultanen, P.: A new curve detection method: randomized Hough transform (RHT). Pattern Recognition Letters 11(5), 331–338 (1990)CrossRefMATHGoogle Scholar
  2. 2.
    Subbarao, R., Meer, P.: Nonlinear mean shift for clustering over analytic manifolds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, pp. 1168–1175 (2006)Google Scholar
  3. 3.
    Fischler, M.A., Bolles, R.C.: Random Sample Consensus: a paradigm model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhang, W., Kosecká, J.: Nonparametric estimation of multiple structures with outliers. In: Vidal, R., Heyden, A., Ma, Y. (eds.) WDV 2005/2006. LNCS, vol. 4358, pp. 60–74. Springer, Heidelberg (2007)Google Scholar
  5. 5.
    Toldo, R., Fusiello, A.: Robust multiple structures estimation with j-linkage. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 537–547. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Fan, L., Pylvänäinen, T.: Robust scale estimation from ensemble inlier sets for random sample consensus methods. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 182–195. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Wang, H., Suter, D.: Robust adaptive-scale parametric model estimation for computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1459–1474 (2004)CrossRefGoogle Scholar
  8. 8.
    Chen, H., Meer, P.: Robust regression with projection based m-estimators. In: 9th International Conference on Computer Vision, pp. 878–885 (2003)Google Scholar
  9. 9.
    Torr, P.H.S., Murray, D.W.: The development and comparison of robust methods for estimating the fundamental matrix. International Journal of Computer Vision 24(3), 271–300 (1997)CrossRefGoogle Scholar
  10. 10.
    Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20(1), 53–65 (1987)CrossRefMATHGoogle Scholar
  11. 11.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Hampel, F., Rousseeuw, P., Ronchetti, E., Stahel, W.: Robust Statistics: the Approach Based on Influence Functions. Wiley Series in probability and mathematical statistics. John Wiley & Sons, Chichester (1986)MATHGoogle Scholar
  13. 13.
    Myatt, D.R., Torr, P.H.S., Nasuto, S.J., Bishop, J.M., Craddock, R.: Napsac: High noise, high dimensional robust estimation - it’s in the bag. In: British Machine Vision Conference (2002)Google Scholar
  14. 14.
    Farenzena, M., Fusiello, A., Gherardi, R., Toldo, R.: Towards unsupervised reconstruction of architectural models. In: Deussen, O., Saupe, D., Keim, D. (eds.) Proceedings of the Vision, Modeling, and Visualization Workshop (VMV 2008), Konstanz, DE, October 8-10, 2008, pp. 41–50. IOS Press, Amsterdam (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Roberto Toldo
    • 1
  • Andrea Fusiello
    • 1
  1. 1.Dipartimento di InformaticaUniversità di VeronaVeronaItaly

Personalised recommendations