Segmentation of Wood Fibres in 3D CT Images Using Graph Cuts

  • Erik L. G. Wernersson
  • Anders Brun
  • Cris L. Luengo Hendriks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

To completely segment all individual wood fibres in volume images of fibrous materials presents a challenging problem but is important in understanding the micro mechanical properties of composite materials. This paper presents a filter that identifies and closes pores in wood fibre walls, simplifying the shape of the fibres. After this filter, a novel segmentation method based on graph cuts identifies individual fibres. The methods are validated on a realistic synthetic fibre data set and then applied on μCT images of wood fibre composites.

Keywords

microtomography (μCT) graph cuts wood fibres composite materials 

References

  1. 1.
    Bowyer, J.L., Shmulsky, R., Haygreen, J.G.: Forest Products and Wood Science, an introduction, 5th edn. Blackwell Publishing, Malden (2007)Google Scholar
  2. 2.
    Donoser, M., Wiltsche, M., Bischof, H.: A new automated microtomy concept for 3D paper structure analysis. In: Proc. of the IAPR Conf. on Machine Vision Appl., pp. 76–79 (2005)Google Scholar
  3. 3.
    Samuelsen, E., Houen, P.J., Gregersen, O.W., Helle, T., Raven, C.: Three-dimensional imaging of paper by use of synchrotron x-ray microtomography. In: Proc. Int. Paper Physics Conf., pp. 307–312 (1999)Google Scholar
  4. 4.
    Aronsson, M., Borgefors, G.: 2D segmentation and labelling of clustered ring shaped objects. In: Scandinavian Conference on Image Analysis, pp. 272–279 (2001)Google Scholar
  5. 5.
    Lunden, J.: Image analysis methods for evaluation of fibre dimensions in paper cross-sections. Master’s thesis, Royal Institute of Technology, Stockholm, Sweden (2002)Google Scholar
  6. 6.
    Svensson, S., Aronsson, M.: Some measurements of fibres in volume images of paper using medial representations detected on distance transforms. In: IEEE Computer Society Conf. Computer Vision Pattern Recognition., vol. 2 (2001)Google Scholar
  7. 7.
    Aronsson, M.: On 3D Fibre Measurements of Digitized Paper. PhD thesis, Swedish University of Agricultural Sciences (2002)Google Scholar
  8. 8.
    Holen, R., Hagen, M.: Segmentation of absorption mode x-ray micro tomographic images of paper. Master’s thesis, Norwegian University of Science and Technology, Trondheim (2004)Google Scholar
  9. 9.
    Bache-Wiig, J., Henden, P.C.: Individual fiber segmentation of three-dimensional microtomograms of paper and fiber-reinforced composite materials. Master’s thesis, Norwegian University of Science and Technology, Trondheim (2005)Google Scholar
  10. 10.
    Piper, J., Granum, E.: Computing distance transformations in convex and non-convex domains. Pattern Recognition 20(6), 599–615 (1987)CrossRefGoogle Scholar
  11. 11.
    Axelsson, M.: 3D tracking of cellulose fibres in volume images. In: IEEE Int. Conf. on Image Processing, vol. 4, pp. 309–312 (2007)Google Scholar
  12. 12.
    Donoser, M., Bischof, H.: Efficient maximally stable extremal region (MSER) tracking. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 553–560 (2006)Google Scholar
  13. 13.
    Carmo, M.P.D.: Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs (1976)MATHGoogle Scholar
  14. 14.
    Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Systems Journal 4(1), 25–30 (1965)CrossRefGoogle Scholar
  15. 15.
    Sonka, M., Hlavac, V., Boyle, R.: Chapter 7.6. In: Image Processing, Analysis, and Machine Vision, 3rd edn. Thomson Engineering (2008)Google Scholar
  16. 16.
    Perlin, K.: An image synthesizer. SIGGRAPH Comput. Graph. 19(3), 287–296 (1985)CrossRefGoogle Scholar
  17. 17.
    Smith, S.M., Brady, J.M.: Susan - a new approach to low level image processing. Int. Journal of Computer Vision 23(1), 45–78 (1997)CrossRefGoogle Scholar
  18. 18.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE PAMI (9), 1124–1137 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Erik L. G. Wernersson
    • 1
  • Anders Brun
    • 1
  • Cris L. Luengo Hendriks
    • 1
  1. 1.Centre for Image AnalysisSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations