Modelling Stem Cells Lineages with Markov Trees

  • Victor Olariu
  • Daniel Coca
  • Stephen A. Billings
  • Visakan Kadirkamanathan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5780)

Abstract

A variational Bayesian EM with smoothed probabilities algorithm for hidden Markov trees (HMT) is proposed for incomplete tree structured data. The full posterior of the HMT parameters is determined and the underflow problems associated with previous algorithms are eliminated. Example results for the prediction of the types of cells in real stem cell lineage trees are presented.

Keywords

Hide Markov Model Embryonal Carcinoma Stem Cell Lineage Cell Lineage Tree Continuous Hide Markov Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andrews, P.W.: Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev. Biol. 103, 285–293 (1984)CrossRefPubMedGoogle Scholar
  2. 2.
    Attias, H.: A variational Bayesian framework for graphical models. In: Advances in Neural Information Processing Systems, vol. 12, pp. 209–215 (2000)Google Scholar
  3. 3.
    Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics 41(1), 164–171 (1970)CrossRefGoogle Scholar
  4. 4.
    Beal, M., Ghahramani, Z.: The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures. Bayesian Statistics 7, 453–464 (2003)Google Scholar
  5. 5.
    Beerenwinkel, N., Drton, M.: A mutagenetic tree hidden Markov model for longitudinal clonal HIV sequence data. Biostat. 8(1), 53–71 (2007)CrossRefGoogle Scholar
  6. 6.
    Bharadwaj, P., Carin, L.: Infrared-image classification using hidden Markov trees. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(10), 1394–1398 (2002)CrossRefGoogle Scholar
  7. 7.
    Bulla, J., Bulla, I.: Stylized facts of financial time series and hidden semi-Markov models. Computational Statistics Data Annals 51(4), 2192–2209 (2006)CrossRefGoogle Scholar
  8. 8.
    Choi, H., Baraniuk, R.G.: Multiscale image segmentation using wavelet-domain hidden Markov models. IEEE Transactions on Image Processing 10, 1309–1321 (2001)CrossRefPubMedGoogle Scholar
  9. 9.
    Crouse, M., Nowak, R., Baraniuk, R.: Wavelet-based statistical signal processing using hidden Markov models. IEEE Transactions on Signal Processing (1997)Google Scholar
  10. 10.
    Dasgupta, N., Carin, L.: Texture analysis with variational hidden Markov trees. IEEE Transactions on Signal Processing 54(6), 2353–2356 (2006)CrossRefGoogle Scholar
  11. 11.
    Devijver, P.A.: Baum’s forward-backward algorithm revisited. Pattern recognition Letters 3, 369–373 (1985)CrossRefGoogle Scholar
  12. 12.
    Diligenti, M., Frasconi, P., Gori, M.: Hidden Markov tree models for document image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(4), 519–523 (2003)CrossRefGoogle Scholar
  13. 13.
    Draper, J.S., Pigott, C., Thomson, J.A., Andrews, P.W.: Surface antigens of human embryonic stem cells: changes upon differentiation in culture. Journal of Anatomy 200, 249–258 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Durand, J.-B., Goncalves, P., Guedon, Y.: Computational methods for hidden Markov tree models-an application to wavelet trees. IEEE Transactions on Signal Processing 52(9), 2551–2560 (2004)CrossRefGoogle Scholar
  15. 15.
    Durand, J.-B., Guédon, Y., Caraglio, Y., Costes, E.: Analysis of the plant architecture via tree-structured statistical models: The hidden Markov tree models. New Phytologist 166, 813–825 (2005)CrossRefPubMedGoogle Scholar
  16. 16.
    Ephraim, Y., Merhav, N.: Hidden Markov processes. IEEE Transaction on Informormation Theory 48, 1518–1569 (2002)CrossRefGoogle Scholar
  17. 17.
    Fredkin, D.R., Rice, J.A.: Fast evaluation of the likelihood of an HMM: Ion channel currents with filtering and colored noise. IEEE Transactions on Signal Processing 49, 625–633 (1997)CrossRefGoogle Scholar
  18. 18.
    Frumkin, D., Wasserstrom, A., Kaplan, S., Feige, U., Shapiro, E.: Genomic variability within an organism exposes its cell lineage tree. PLoS Computational Biology 1, 382–394 (2005)CrossRefGoogle Scholar
  19. 19.
    Ji, S., Krishnapuram, B., Carin, L.: Variational Bayes for continuous hidden Markov models and its application to active learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(4), 522–532 (2006)CrossRefPubMedGoogle Scholar
  20. 20.
    Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathematical Statistics 22(1), 79–86 (1951)CrossRefGoogle Scholar
  21. 21.
    Lee, D.-S.: Substitution deciphering based on HMMs with applications to compressed document processing. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(12), 1661–1666 (2002)CrossRefGoogle Scholar
  22. 22.
    Levinson, S.E., Rabiner, L.R., Sondhi, M.M.: An introduction to the application of the theory of probabilistic functions of a Markov process in automatic speech recognition. Bell System Technology J. 62, 1035–1074 (1983)CrossRefGoogle Scholar
  23. 23.
    Mackay, D.J.C.: Ensemble learning for hidden Markov models (1997)Google Scholar
  24. 24.
    Romberg, J.K., Choi, H., Baraniuk, R.G.: Bayesian tree-structured image modeling using wavelet-domain hidden Markov models. IEEE Transactions on Image Processing 10, 1056–1068 (2001)CrossRefPubMedGoogle Scholar
  25. 25.
    Ronen, O., Rohlicek, J., Ostendorf, M.: Parameter estimation of dependence tree models using the EM algorithm. IEEE Signal Processing Letters 2(8), 157–159 (1995)CrossRefGoogle Scholar
  26. 26.
    Schliep, A., Costa, I.G., Steinhoff, C., Schnhuth, A.: Analyzing gene expression time-courses. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2(3), 179–193 (2005)CrossRefPubMedGoogle Scholar
  27. 27.
    Watanabe, S., Minami, Y., Nakamura, A., Ueda, N.: Variational Bayesian estimation and clustering for speech recognition. IEEE Transactions on Speech Audio Process 12, 365–381 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Victor Olariu
    • 1
  • Daniel Coca
    • 1
  • Stephen A. Billings
    • 1
  • Visakan Kadirkamanathan
    • 1
  1. 1.Department of Automatic Control and Systems EngineeringThe University of SheffieldUK

Personalised recommendations