Definition of Valid Proteomic Biomarkers: A Bayesian Solution

  • Keith Harris
  • Mark Girolami
  • Harald Mischak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5780)

Abstract

Clinical proteomics is suffering from high hopes generated by reports on apparent biomarkers, most of which could not be later substantiated via validation. This has brought into focus the need for improved methods of finding a panel of clearly defined biomarkers. To examine this problem, urinary proteome data was collected from healthy adult males and females, and analysed to find biomarkers that differentiated between genders. We believe that models that incorporate sparsity in terms of variables are desirable for biomarker selection, as proteomics data typically contains a huge number of variables (peptides) and few samples making the selection process potentially unstable. This suggests the application of a two-level hierarchical Bayesian probit regression model for variable selection which assumes a prior that favours sparseness. The classification performance of this method is shown to improve that of the Probabilistic K-Nearest Neighbour model.

Keywords

Proteomic biomarkers classification sparsity feature selection Bayesian inference 

References

  1. 1.
    Mischak, H., Apweiler, R., Banks, R.E., Conaway, M., Coon, J., Dominiczak, A., Ehrich, J.H.H., Fliser, D., Girolami, M., Hermjakob, H., Hochstrasser, D., Jankowski, J., Julian, B.A., Kolch, W., Massy, Z.A., Neusuess, C., Novak, J., Peter, K., Rossing, K., Schanstra, J., Semmes, O.J., Theodorescu, D., Thongboonkerd, V., Weissinger, E.M., Van Eyk, J.E., Yamamoto, T.: Clinical proteomics: A need to define the field and to begin to set adequate standards. Proteomics - Clinical Applications 1(2), 148–156 (2007)CrossRefPubMedGoogle Scholar
  2. 2.
    Decramer, S., de Peredo, A.G., Breuil, B., Mischak, H., Monsarrat, B., Bascands, J.L., Schanstra, J.P.: Urine in clinical proteomics. Molecular and Cellular Proteomics 7(10), 1850–1862 (2008)CrossRefPubMedGoogle Scholar
  3. 3.
    Petricoin, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg, S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C., Liotta, L.A.: Use of proteomic patterns in serum to identify ovarian cancer. The Lancet 359(9306), 572–577 (2002)CrossRefGoogle Scholar
  4. 4.
    Check, E.: Proteomics and cancer - running before we can walk? Nature 429(6991), 496–497 (2004)CrossRefPubMedGoogle Scholar
  5. 5.
    Mischak, H., Coon, J.J., Novak, J., Weissinger, E.M., Schanstra, J.P., Dominiczak, A.F.: Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: An update of recent developments. Mass Spectrometry Reviews (October 2008) (in press)Google Scholar
  6. 6.
    Coon, J.J., Zürbig, P., Dakna, M., Dominiczak, A.F., Decramer, S., Fliser, D., Frommberger, M., Golovko, I., Good, D.M., Herget-Rosenthal, S., Jankowski, J., Julian, B.A., Kellmann, M., Kolch, W., Massy, Z., Novak, J., Rossing, K., Schanstra, J.P., Schiffer, E., Theodorescu, D., Vanholder, R., Weissinger, E.M., Mischak, H., Schmitt-Kopplin, P.: CE-MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics. Proteomics - Clinical Applications 2(7-8), 964–973 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jantos-Siwy, J., Schiffer, E., Brand, K., Schumann, G., Rossing, K., Delles, C., Mischak, H., Metzger, J.: Quantitative urinary proteome analysis for biomarker evaluation in chronic kidney disease. Journal of Proteome Research 8(1), 268–281 (2009)CrossRefPubMedGoogle Scholar
  8. 8.
    Manocha, S., Girolami, M.: An empirical analysis of the probabilistic k-nearest neighbour classifier. Pattern Recognition Letters 28(13), 1818–1824 (2007)CrossRefGoogle Scholar
  9. 9.
    Holmes, C.C., Adams, N.M.: A probabilistic nearest neighbour method for statistical pattern recognition. J. R. Statist. Soc. B 64(2), 295–306 (2002)CrossRefGoogle Scholar
  10. 10.
    Everson, R.M., Fieldsend, J.E.: A variable metric probabilistic k-nearest-neighbours classifier. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 654–659. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Bae, K., Mallick, B.K.: Gene selection using a two-level hierarchical Bayesian model. Bioinformatics 20(18), 3423–3430 (2004)CrossRefPubMedGoogle Scholar
  12. 12.
    Albert, J., Chib, S.: Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association 88, 669–679 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Keith Harris
    • 1
  • Mark Girolami
    • 1
  • Harald Mischak
    • 2
  1. 1.Inference Group, Department of Computing ScienceUniversity of GlasgowUK
  2. 2.Mosaiques Diagnostics and Therapeutics AGHannoverGermany

Personalised recommendations