Texture Sensitive Denoising for Single Sensor Color Imaging Devices

  • Angelo Bosco
  • Sebastiano Battiato
  • Arcangelo Bruna
  • Rosetta Rizzo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5646)

Abstract

This paper presents a spatial noise reduction technique designed to work on CFA (Color Filter Array) data acquired by CCD/CMOS image sensors. The overall processing preserves image details by using heuristics related to HVS (Human Visual System) and texture detection. The estimated amount of texture and HVS sensitivity are combined to regulate the filter strength. Experimental results confirm the effectiveness of the proposed technique.

Keywords

Denoising Color Filter Array HVS Texture Detection 

References

  1. 1.
    Amer, A., Dubois, E.: Fast and reliable structure-oriented video noise estimation. IEEE Transaction on Circuits System Video Technology 15(1) (2005)Google Scholar
  2. 2.
    Battiato, S., Mancuso, M.: An Introduction to the Digital Still Camera Technology. ST Journal of System Research, Special Issue on Image Processing for Digital Still Camera 2, 2–9 (2001)Google Scholar
  3. 3.
    Barcelos, C.A.Z., Boaventura, M., Silva, E.C.: A Well-Balanced Flow Equation for Noise Removal and Edge Detection. IEEE Transactions on Image Processing 12(7), 751–763 (2003)CrossRefGoogle Scholar
  4. 4.
    Bayer, B.E.: Color Imaging Array, US. Patent No. 3, 971, 965 (1976)Google Scholar
  5. 5.
    Chou, C.-H., Li, Y.-C.: A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile. IEEE Transactions on Circuits and Systems for Video Technology 5(6), 467–476 (1995)CrossRefGoogle Scholar
  6. 6.
    Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data. IEEE Transactions on Image Processing 17(10), 1737–1754 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gonzales, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, Englewood Cliffs (2007)Google Scholar
  8. 8.
    Hontsch, I., Karam, L.J.: Locally adaptive perceptual image coding. IEEE Transactions on Image Processing 9(9), 1472–1483 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kalevo, O., Rantanen, H.: Noise Reduction Techniques for Bayer-Matrix Images. In: Proceedings of SPIE Electronic Imaging, Sensors, Cameras, and Applications for Digital Photography III 2002, San Jose, CA, USA, vol. 4669 (2002)Google Scholar
  10. 10.
    Kim, Y.-H., Lee, J.: Image feature and noise detection based on statistical hypothesis tests and their applications in noise reduction. IEEE Transactions on Consumer Electronics 51(4), 1367–1378 (2005)CrossRefGoogle Scholar
  11. 11.
    Lian, N., Chang, L., Tan, Y.-P.: Improved color filter array demosaicking by accurate luminance estimation. In: IEEE International Conference on Image Processing, vol. 1, pp. 41–44 (2005)Google Scholar
  12. 12.
    Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image Denoising Using Scale Mixtures of Gaussians in the Wavelet Domain. IEEE Transactions on Image Processing 12(11), 1338–1351 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Scharcanski, J., Jung, C.R., Clarke, R.T.: Adaptive Image Denoising Using Scale and Space Consistency. IEEE Transactions on Image Processing 11(9), 1092–1101 (2002)CrossRefGoogle Scholar
  14. 14.
    Smith, S.M., Brady, J.M.: SUSAN - A New Approach to Low Level Image Processing. International Journal of Computer Vision 23(1), 45–78 (1997)CrossRefGoogle Scholar
  15. 15.
    Wandell, B.: Foundations of Vision, Sinauer Associates (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Angelo Bosco
    • 1
  • Sebastiano Battiato
    • 2
  • Arcangelo Bruna
    • 1
  • Rosetta Rizzo
    • 2
  1. 1.STMicroelectronicsCataniaItaly
  2. 2.Dipartimento di Matematica ed InformaticaUniversità di CataniaCataniaItaly

Personalised recommendations