Non-linear Filter Response Distributions of Natural Colour Images

  • Alexander Balinsky
  • Nassir Mohammad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5646)

Abstract

We observe a non-Gaussian heavy tailed distribution for the non-linear filter
$$ \label{Filter} \gamma(U)(\mathbf r) = U(\bold r) - \sum_{ \mathbf s \in N(\mathbf r)} w{(Y)_{\mathbf r \mathbf s}} U(\mathbf s), $$
(1)
applied to the chromacity channel ’U’ (and equivalently to ’V’) on individual natural colour images in the colour space YUV. We fit a Generalised Gaussian Distribution (GGD) to the histogram of the filter response, and observe the shape parameter (α) to lie within the range 0 < α< 2, but rarely α> 1.

Keywords

Non-Gaussian Statistics Image Colorization Non-Linear Filter Response Natural Colour Statistics 

References

  1. 1.
    Huang, J., Mumford, D.: Statistics of Natural Images and Models. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, CO, vol. 1, pp. 541–547 (1999)Google Scholar
  2. 2.
    Mallat, S.G.: A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Anal. Machine Intell. 11, 674–693 (1989)CrossRefMATHGoogle Scholar
  3. 3.
    Mumford, D.: Empirical Investigations into the Statistics of Clutter and the Mathematical Models it Leads To, Lecture for the Review of ARO Metric Pattern Theory Collaborative, Brown Univ., Providence, RI (2000)Google Scholar
  4. 4.
    Wainwright, M.J., Simoncelli, E.P., Willsky, A.S.: Random Cascades on Wavelet Trees and their use in Analysing and Modelling Natural Images. Appl. Comput. Harman, Anal. 11, 89–123 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Field, D.J.: Relations between the Statistics of Natural Images and the Response Properties of Cortical Cells. J. Opt. Amer. 4(12), 2379–2394 (1987)CrossRefGoogle Scholar
  6. 6.
    Olshausen, B.A., Field, D.J.: Natural Image Statistics and Efficient Coding, New. Computation Neural syst. 7 (1996)Google Scholar
  7. 7.
    Srivastava, A.: Stochastic Models for Capturing Image Variability. IEEE Signal Procesing Magazine 19(5), 63–76 (2002)CrossRefGoogle Scholar
  8. 8.
    Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Transactions on Graphics 23(3), 689–694 (2004)CrossRefGoogle Scholar
  9. 9.
    Caselles, V., Coll, B., Morel, J.M.: Geometry and color in natural images. Journal of Mathematical Imaging and Vision 16(2), 89–105 (2002)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alexander Balinsky
    • 1
  • Nassir Mohammad
    • 1
    • 2
  1. 1.School of MathematicsCardiff UniversityCardiffUK
  2. 2.Hewlett Packard LaboratoriesBristolUK

Personalised recommendations