The Millipede – A Nanotechnology-Based AFM Data-Storage System

  • Gerd K. BinnigEmail author
  • Giovanni CherubiniEmail author
  • Michel DespontEmail author
  • Urs T. DürigEmail author
  • Evangelos EleftheriouEmail author
  • Haralampos PozidisEmail author
  • Peter VettigerEmail author
Part of the Springer Handbooks book series (SHB)


The millipede concept presented in this chapter is a new approach to storing data at high speed and ultrahigh density. The interesting part is that millipede stores digital information in a completely different way from magnetic hard disks, optical disks, and transistor-based memory chips. The ultimate locality is provided by a tip, and high data rates are a result of massive parallel operation of such tips. As storage medium, polymer films are being considered, although the use of other media, in particular magnetic materials, has not been ruled out. The current effort is focused on demonstrating the millipede concept with areal densities higher than 1 Tb/inch2 and parallel operation of very large two-dimensional (2-D) (up to 64 × 64) atomic force microscopy (AFM) cantilever arrays with integrated tips and write/read/erase functionality. The fabrication and integration of such a large number of mechanical devices (cantilever beams) will lead to what we envision as the very large-scale integration (VLSI) age of micro- and nanomechanics.

In this chapter, the millipede concept for a microelectromechanical systems (MEMS)-based storage device is described in detail. In particular, various aspects pertaining to AFM thermomechanical read/write/erase functions, 2-D array fabrication and characteristics, x, y, z microscanner design, polymer media properties, read channel modeling, servo control and synchronization, as well as modulation coding techniques suitable for probe-based data-storage devices are discussed.


Atomic Force Microscope Storage Medium Areal Density Volterra Series Array Chip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





amorphous carbon


analog-to-digital converter


atomic force microscope


atomic force microscopy


bit pitch




dynamic random-access memory


microelectromechanical system






plasma-enhanced chemical vapor deposition


photoemission spectroscopy


position error signal


poly(methyl methacrylate)


scanning electron microscope


scanning electron microscopy


sampling rate converter


scanning tunneling microscope


scanning tunneling microscopy


track pitch


voltage-controlled oscillator


very large-scale integration


  1. 47.1.
    E. Grochowski, R.F. Hoyt: Future trends in hard disk drives, IEEE Trans. Magn. 32, 1850–1854 (1996)CrossRefGoogle Scholar
  2. 47.2.
    D.A. Thompson, J.S. Best: The future of magnetic data storage technology, IBM J. Res. Dev. 44, 311–322 (2000)CrossRefGoogle Scholar
  3. 47.3.
    G. Binnig, H. Rohrer, C. Gerber, E. Weibel: 7 × 7 reconstruction on Si(111) resolved in real space, Phys. Rev. Lett. 50, 120–123 (1983)CrossRefGoogle Scholar
  4. 47.4.
    G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986)CrossRefGoogle Scholar
  5. 47.5.
    H.J. Mamin, D. Rugar: Thermomechanical writing with an atomic force microscope tip, Appl. Phys. Lett. 61, 1003–1005 (1992)CrossRefGoogle Scholar
  6. 47.6.
    R.P. Ried, H.J. Mamin, B.D. Terris, L.S. Fan, D. Rugar: 6-MHz 2-N/m piezoresistive atomic-force-microscope cantilevers with INCISIVE tips, J. Microelectromech. Syst. 6, 294–302 (1997)CrossRefGoogle Scholar
  7. 47.7.
    B.D. Terris, S.A. Rishton, H.J. Mamin, R.P. Ried, D. Rugar: Atomic force microscope-based data storage: Track servo and wear study, Appl. Phys. A 66, S809–S813 (1998)CrossRefGoogle Scholar
  8. 47.8.
    H.J. Mamin, B.D. Terris, L.S. Fan, S. Hoen, R.C. Barrett, D. Rugar: High-density data storage using proximal probe techniques, IBM J. Res. Dev. 39, 681–699 (1995)CrossRefGoogle Scholar
  9. 47.9.
    H.J. Mamin, R.P. Ried, B.D. Terris, D. Rugar: High-density data storage based on the atomic force microscope, Proc. IEEE 87, 1014–1027 (1999)CrossRefGoogle Scholar
  10. 47.10.
    L.R. Carley, J.A. Bain, G.K. Fedder, D.W. Greve, D.F. Guillou, M.S.C. Lu, T. Mukherjee, S. Santhanam, L. Abelmann, S. Min: Single-chip computers with microelectromechanical systems-based magnetic memory, J. Appl. Phys. 87, 6680–6685 (2000)CrossRefGoogle Scholar
  11. 47.11.
    G. Gibson, T.I. Kamins, M.S. Keshner, S.L. Neberhuis, C.M. Perlov, C.C. Yang: Ultra-high density storage device, (1996) US Patent 5557596Google Scholar
  12. 47.12.
    E. Eleftheriou, T. Antonakopoulos, G.K. Binnig, G. Cherubini, M. Despont, A. Dholakia, U. Dürig, M.A. Lantz, H. Pozidis, H.E. Rothuizen, P. Vettiger: Millipede – A MEMS-based scanning-probe data-storage system, IEEE Trans. Magn. 39, 938–945 (2003)CrossRefGoogle Scholar
  13. 47.13.
    G.K. Binnig, H. Rohrer, P. Vettiger: Mass-storage applications of local probe arrays, (1998) US Patent 5835477Google Scholar
  14. 47.14.
    P. Vettiger, J. Brugger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig: Ultrahigh density, high-data-rate NEMS-based AFM data storage system, J. Microelectron. Eng. 46, 11–17 (1999)CrossRefGoogle Scholar
  15. 47.15.
    P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Dürig, B. Gotsmann, W. Häberle, M.A. Lantz, H.E. Rothuizen, R. Stutz, G.K. Binnig: The “millipede” – Nanotechnology entering data storage, IEEE Trans. Nanotechnol. 1, 39–55 (2002)CrossRefGoogle Scholar
  16. 47.16.
    M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Häberle, H. Rohrer, H. Rothuizen, P. Vettiger: Microfabrication and parallel operation of 5 × 5 2D AFM cantilever array for data storage and imaging, Proc. IEEE 11st Int. Workshop MEMS, Heidelberg 1998 (IEEE, Piscataway 1998) pp. 8–11Google Scholar
  17. 47.17.
    M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Häberle, H. Rohrer, H. Rothuizen, P. Vettiger, G. Yaralioglu, C. Quate: 5 × 5 2D AFM cantilever arrays: A first step towards a terabit storage device, Sens. Actuators A 73, 89–94 (1999)CrossRefGoogle Scholar
  18. 47.18.
    P. Vettiger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M.I. Lutwyche, H.E. Rothuizen, R. Stutz, R. Widmer, G.K. Binnig: The “millipede” – More than one thousand tips for future AFM data storage, IBM J. Res. Dev. 44, 323–340 (2000)CrossRefGoogle Scholar
  19. 47.19.
    B.W. Chui, H.J. Mamin, B.D. Terris, D. Rugar, K.E. Goodson, T.W. Kenny: Micromachined heaters with 1–μ s thermal time constants for AFM thermomechanical data storage, Proc. IEEE Transducers, Chicago 1997 (IEEE, Piscataway 1997) 1085–1088Google Scholar
  20. 47.20.
    W.P. King, J.G. Santiago, T.W. Kenny, K.E. Goodson: Modelling and prediction of sub-micrometer heat transfer during thermomechanical data storage, 1999 Microelectromechanical Systems (MEMS). Proc. ASME Intl. Mech. Eng. Congr. Expo., ed. by A.P. Lee, L. Lin, F.K. Forster, Y.C. Young, K. Goodson, R.S. Keynton (ASME, New York 1999) pp. 583–588Google Scholar
  21. 47.21.
    W.P. King, T.W. Kenny, K.E. Goodson, G.L.W. Cross, M. Despont, U. Dürig, H. Rothuizen, G. Binnig, P. Vettiger: Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation, J. Microelectromech. Syst. 11, 765–774 (2002)CrossRefGoogle Scholar
  22. 47.22.
    G.K. Binnig, M. Despont, W. Häberle, P. Vettiger: Method of forming ultrasmall structures and apparatus therefore, (March 1999) US Patent Office, Application No. 147865Google Scholar
  23. 47.23.
    G. Binnig, M. Despont, U. Drechsler, W. Häberle, M. Lutwyche, P. Vettiger, H.J. Mamin, B.W. Chui, T.W. Kenny: Ultra high-density AFM data storage with erase capability, Appl. Phys. Lett. 74, 1329–1331 (1999)CrossRefGoogle Scholar
  24. 47.24.
    G.K. Binnig, J. Brugger, W. Häberle, P. Vettiger: Investigation and/or manipulation device (March 1999) US Patent Office, Application No. 147867Google Scholar
  25. 47.25.
    S.M. Sze: Physics of Semiconductors Devices (Wiley, New York 1981)Google Scholar
  26. 47.26.
    G. Cherubini, T. Antonakopoulos, P. Bächtold, G.K. Binnig, M. Despont, U. Drechsler, A. Dholakia, U. Dürig, E. Eleftheriou, B. Gotsmann, W. Häberle, M.A. Lantz, T. Loeliger, H. Pozidis, H.E. Rothuizen, R. Stutz, P. Vettiger: The millipede, a very dense, highly parallel scanning-probe data-storage system, ESSCIRC – Proc. 28th Eur. Solid-State Circuits Conf., ed. by A. Baschirotto, P. Malcovati (Univ. Bologna, Bologna 2002) pp. 121–125Google Scholar
  27. 47.27.
    E. Eleftheriou, T. Antonakopoulos, G.K. Binnig, G. Cherubini, M. Despont, A. Dholakia, U. Dürig, M.A. Lantz, H. Pozidis, H.E. Rothuizen, P. Vettiger: “Millipede”: A MEMS-based scanning-probe data-storage system, Digest of the Asia-Pacific Magnetic Recording Conference 2002, APMRC ʼ02 (IEEE, Piscataway 2002) CE–2–1–CE2–2Google Scholar
  28. 47.28.
    H. Pozidis, W. Häberle, D. Wiesmann, U. Drechsler, M. Despont, T.R. Albrecht, E. Eleftheriou: Demonstration of thermomechanical recording at 641 Gbit/in2, IEEE Trans. Magn. 40, 2531–2536 (2004)CrossRefGoogle Scholar
  29. 47.29.
    M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, P. Vettiger: VLSI-NEMS chip for AFM data storage, Technical Digest 12nd IEEE Int. Micro Electro Mech. Syst. Conf. “MEMS ʼ99”, Orlando 1999 (IEEE, Piscataway 1999) 564–569Google Scholar
  30. 47.30.
    T.S. Ravi, R.B. Marcus: Oxidation sharpening of silicon tips, J. Vac. Sci. Technol. B 9, 2733–2737 (1991)CrossRefGoogle Scholar
  31. 47.31.
    M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, P. Vettiger: VLSI-NEMS chip for parallel AFM data storage, Sens. Actuators A 80, 100–107 (2000)CrossRefGoogle Scholar
  32. 47.32.
    A. Pantazi, M. Lantz, G. Cherubini, H. Pozidis, E. Eleftheriou: A servomechanism for a micro-electro-mechanical-system-based scanning-probe data storage device, Nanotechnology 15, S612–S621 (2004)CrossRefGoogle Scholar
  33. 47.33.
    M. Despont, U. Drechsler, R. Yu, H.B. Pogge, P. Vettiger: Wafer-scale microdevice transfer/interconnect: from a new integration method to its application in an AFM-based data-storage system, Technical Digest, Transducers `03 (IEEE, Piscataway 2003) pp. 1907–1910Google Scholar
  34. 47.34.
    H. Rothuizen, M. Despont, U. Drechsler, G. Genolet, W. Häberle, M. Lutwyche, R. Stutz, P. Vettiger: Compact copper/epoxy-based micromachined electromagnetic scanner for scanning probe applications, Technical Digest, 15th IEEE Int. Conf. on Micro Electro Mech. Syst. “MEMS 2002” (IEEE, Piscataway 2002) pp. 582–585Google Scholar
  35. 47.35.
    S.C. Minne, G. Yaralioglu, S.R. Manalis, J.D. Adams, A. Atalar, C.F. Quate: Automated parallel high-speed atomic force microscopy, Appl. Phys. Lett. 72, 2340–2342 (1998)CrossRefGoogle Scholar
  36. 47.36.
    M. Lutwyche, U. Drechsler, W. Häberle, R. Widmer, H. Rothuizen, P. Vettiger, J. Thaysen: Planar micromagnetic x/y/z scanner with five degrees of freedom. In: Magnetic Materials, Processes, and Devices: Applications to Storage and Micromechanical Systems (MEMS), Vol. 98-20, ed. by L.T. Romankiw, S. Krongelb, C.H. Ahn (Electrochemical Society, Pennington 1999) pp. 423–433Google Scholar
  37. 47.37.
    H. Rothuizen, U. Drechsler, G. Genolet, W. Häberle, M. Lutwyche, R. Stutz, R. Widmer, P. Vettiger: Fabrication of a micromachined magnetic x/y/z scanner for parallel scanning probe applications, Microelectron. Eng. 53, 509–512 (2000)CrossRefGoogle Scholar
  38. 47.38.
    J.-J. Choi, H. Park, K.Y. Kim, J.U. Jeon: Electromagnetic micro x-y stage for probe-based data storage, J. Semicond. Technol. Sci. 1, 84–93 (2001)Google Scholar
  39. 47.39.
    H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, P. Renaud: High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS, Sens. Actuators A 64, 33–39 (1998)CrossRefGoogle Scholar
  40. 47.40.
    C.Q. Davis, D. Freeman: Using a light microscope to measure motions with nanometer accuracy, Opt. Eng. 37, 1299–1304 (1998)CrossRefGoogle Scholar
  41. 47.41.
    A. Pantazi, A. Sebastian, G. Cherubini, M.A. Lantz, H. Pozidis, H. Rothuizen, E. Eleftheriou: Control of MEMS-based scanning-probe data-storage devices, IEEE Trans. Control Syst. Technol. 15, 824–841 (2007)CrossRefGoogle Scholar
  42. 47.42.
    M. Despont, U. Drechsler, W. Häberle, M.A. Lantz, H. Rothuizen: A vibration resistant nanopositioner for mobile parallel-probe storage applications, J. Microelectromech. Syst. 16, 130–139 (2007)CrossRefGoogle Scholar
  43. 47.43.
    M.A. Lantz, G.K. Binnig, M. Despont, U. Drechsler: A micromechanical thermal displacement sensor with nanometer resolution, Nanotechnolology 16, 1089–1094 (2005)CrossRefGoogle Scholar
  44. 47.44.
    M.I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G.K. Binnig, P. Vettiger: Highly parallel data storage system based on scanning probe arrays, Appl. Phys. Lett. 77, 3299–3301 (2000)CrossRefGoogle Scholar
  45. 47.45.
    K. Fuchs, C. Friedrich, J. Weese: Viscoelastic properties of narrow-distribution poly(methyl metacrylates), Macromolecules 29, 5893–5901 (1996)CrossRefGoogle Scholar
  46. 47.46.
    U. Dürig, B. Gotsman: This estimate is based on a fluid dynamic deformation model of a thin film, private communicationGoogle Scholar
  47. 47.47.
    J.D. Ferry: Viscoelastic Properties of Polymers, 3rd edn. (Wiley, New York 1980)Google Scholar
  48. 47.48.
    H. Pozidis, P. Bächtold, G. Cherubini, E. Eleftheriou, C. Hagleitner, A. Pantazi, A. Sebastian: Signal processing for probe storage, Proc. Int. Conf. Acoust. Speech Signal Process. “ICASSP 2005”, Philadelphia 2005 (IEEE, Piscataway 2005) pp. 745-748Google Scholar
  49. 47.49.
    T. Loeliger, P. Bächtold, G.K. Binnig, G. Cherubini, U. Dürig, E. Eleftheriou, P. Vettiger, M. Uster, H. Jäckel: CMOS sensor array with cell-level analog-to-digital conversion for local probe data storage, ESSCIRC – Proc. 28th Eur. Solid-State Circuits Conf., ed. by A. Baschirotto, P. Malcovati (Univ. Bologna, Bologna 2002) pp. 623–626Google Scholar
  50. 47.50.
    C. Hagleitner, T. Bonaccio, H. Rothuizen, J. Lienemann, D. Wiesmann, G. Cherubini, J.G. Korvink, E. Eleftheriou: Modeling, design, and verification for the analog front-end of a MEMS-based parallel scanning-probe storage device, IEEE J. Solid State Circuits 42, 1779–1789 (2007)CrossRefGoogle Scholar
  51. 47.51.
    M. Schetzen: Nonlinear system modeling based on the Wiener theory, Proc. IEEE 69, 1557–1573 (1981)CrossRefGoogle Scholar
  52. 47.52.
    A.H. Sacks: Position signal generation in magnetic disk drives. Ph.D. Thesis (Carnegie Mellon University, Pittsburgh 1995)Google Scholar
  53. 47.53.
    K.A.S. Immink: Coding Techniques for Digital Recorders (Prentice Hall, Hemel 1991)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Definiens AGMunichGermany
  2. 2.Tape TechnologiesIBM Zurich Research LaboratoryRüschlikonSwitzerland
  3. 3.IBM Zurich Research Laboratory Micro- and NanofabricationRüschlikonSwitzerland
  4. 4.IBM Zurich Research Laboratory Micro-/NanofabricationRüschlikonSwitzerland
  5. 5.IBM Zurich Research LaboratoryRüschlikonSwitzerland
  6. 6.Storage TechnologiesIBM Zurich Research LaboratoryRüschlikonSwitzerland
  7. 7.SAMLABUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations