Advertisement

A SIS Epidemiological Model Based on Cellular Automata on Graphs

  • María J. Fresnadillo
  • Enrique García
  • José E. García
  • Ángel Martín
  • Gerardo Rodríguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5518)

Abstract

The main goal of this work is to introduce a new SIS epidemic model based on a particular type of finite state machines called cellular automata on graphs. The state of each cell stands for the fraction of the susceptible and infected individuals of the cell at a particular time step and the evolution of these classes is given in terms of a local transition function.

Keywords

Epidemiological model cellular automata SIS model 

References

  1. 1.
    Ahmed, E., Elgazzar, A.S.: On some applications of cellular automata. Physica A 296, 529–538 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beauchemin, C., Samuel, J., Tuszynski, J.: A simple cellular automaton model for influenza A viral infections. J. Theor. Biol. 232, 223–234 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boccara, N., Cheong, K.: Critical behaviour of a probablistic automata network SIS model for the spread of an infectious disease in a population of moving individuals. J. Phys. A-Math. Gen. 26, 3707–3717 (1993)CrossRefzbMATHGoogle Scholar
  4. 4.
    Fuentes, M.A., Kuperman, M.N.: Cellular automata and epidemiological models with spatial dependence. Physica A 267, 471–486 (1999)CrossRefGoogle Scholar
  5. 5.
    White, S.H., del Rey, A.M., Sánchez, G.R.: A model based on cellular automata to simulate epidemic diseases. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 304–310. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics, part I. Proc. Roy. Soc. Edin. A 115, 700–721 (1927)CrossRefzbMATHGoogle Scholar
  7. 7.
    Martins, M.L., et al.: A cellular automata model for citrus variegated chlorosis. Physica A 295, 42–48 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Molisson, D.: The dependence of epidemic and population velocities on basic parameters. Math. Biosci. 107, 255–287 (1991)CrossRefGoogle Scholar
  9. 9.
    Ross, R.: The prevention of malaria, 2nd edn. Murray, London (1911)Google Scholar
  10. 10.
    Satsuma, J., et al.: Extending the SIR epidemic model. Physica A 336, 369–375 (2004)CrossRefGoogle Scholar
  11. 11.
    Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.: A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecol. Model. 133, 209–223 (2000)CrossRefGoogle Scholar
  12. 12.
    Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge (1987)zbMATHGoogle Scholar
  13. 13.
    Wolfram, W.: A New Kind of Science. Wolfram Media Inc. (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • María J. Fresnadillo
    • 1
  • Enrique García
    • 1
  • José E. García
    • 1
  • Ángel Martín
    • 2
  • Gerardo Rodríguez
    • 3
  1. 1.Dpto. Medicina Preventiva, Salud Pública y Microbiología Médica Facultad de MedicinaUniversidad de SalamancaSalamancaSpain
  2. 2.Department of Applied MathematicsE.P.S. de Ávila, Universidad de SalamancaÁvilaSpain
  3. 3.Department of Applied MathematicsE.P.S. de Zamora, Universidad de SalamancaZamoraSpain

Personalised recommendations