A Social Network Model Based on Topology Vision

  • Ping-Nan Hsiao
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 5)


There are many researchers proposed social network models in recent years, and most of them focus on clustering coefficient property of a small-world network and power law degree distribution of a scale-free property. In social network topology, we observed the network is consisted of many nodes with small connectivity and a few high-degree nodes. In the small connectivity part, there are many nodes which have only one degree. Most of past social network models can not generate this part. In this paper, we proposed a social network model based on topology vision and with tunable high hub connectivity. At the same time, we suggested a new characteristic of social network, condensed clustering coefficient, to replace the original clustering coefficient. Finally, this study also includes the analysis of real social network data.


Social Network Network Model BA Model Small-World Scale-Free Clustering Coefficient Condensed Clustering Coefficient 


  1. 1.
    Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: Classes of Small-World Networks. Proceedings of the National Academy of Sciences 97(21), 11149–11152 (2000)CrossRefGoogle Scholar
  2. 2.
    Newman, M.E.J.: Clustering and Preferential Attachment in Growing Networks. Physical Review E 64, 025102 (2001)CrossRefGoogle Scholar
  3. 3.
    Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E., Åberg, Y.: The Web of Human Sexual Contacts. Nature 411, 907–908 (2001)CrossRefGoogle Scholar
  4. 4.
    Newman, M.E.J.: The Structure of Scientific Collaboration Networks. Proceedings of the National Academy of Sciences 98(2), 404–409 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Watts, D.J., Strogatz, S.H.: Collective Dynamics of ‘Small-World’ Networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  6. 6.
    Barabási, A.-L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the Social Network of Scientific Collaborations. Physica A 311, 590–614 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Klemm, K., Eguiluz, V.M.: Highly Clustered Scale-Free Networks. Physical Review E 65, 036123 (2002)CrossRefGoogle Scholar
  8. 8.
    Holme, P., Kim, B.J.: Growing Scale-Free Networks with Tunable Clustering. Physical Review E 65, 026107 (2002)CrossRefGoogle Scholar
  9. 9.
    Klemm, K., Eguiluz, V.M.: Growing Scale-Free Networks with Small-World Behavior. Physical Review E 65, 057102 (2002)CrossRefGoogle Scholar
  10. 10.
    Warren, C.P., Sander, L.M., Sokolov, I.M.: Geography in a Scale-Free Network Model. Physical Review E 66, 056105 (2002)CrossRefGoogle Scholar
  11. 11.
    Csanyi, G., Szendrői, B.: Structure of a Large Social Network. Physical Review E 69, 036131 (2004)CrossRefGoogle Scholar
  12. 12.
    Boguñá, M., Pastor-Satorras, R., Díaz-Guilera, A., Arenas, A.: Models of Social Networks Based on Social Distance Attachment. Physical Review E 70, 56122 (2004)CrossRefGoogle Scholar
  13. 13.
    Wang, B., Tang, H., Zhang, Z., Xiu, Z.: Evolving Scale-Free Network Model with Tunable Clustering. International Journal of Modern Physics B 19(26), 3951–3959 (2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    Wong, L.H., Pattison, P., Robins, G.: A Spatial Model for Social Networks. Physica A 360, 99–120 (2006)CrossRefGoogle Scholar
  15. 15.
    Toivonen, R., Onnela, J.-P., Saramäki, J., Hyvönen, J., Kaski, K.: A Model for Social Networks. Physica A 371, 851–860 (2006)CrossRefGoogle Scholar
  16. 16.
    Tsai, Y., Lin, C.-C., Hsiao, P.-N.: Modeling Email Communications. IEICE Transactions on Information and Systems E87-D(6), 1438–1445 (2004)Google Scholar
  17. 17.
    Anderson, R.M., Fraser, C., Ghani, A.C., Donnelly, C.A., Riley, S., Ferguson, N.M., Leung, G.M., Lam, T.H., Hedley, A.J.: Epidemiology, Transmission Dynamics and Control of SARS: the 2002-2003 Epidemic. Philosophical Transactions: Biological Sciences 359, 1091–1105 (2004)CrossRefGoogle Scholar
  18. 18.
    Meyers, L.A., Pourbohloul, B.P., Newman, M.E.J., Skowronski, D.M., Brunham, R.C.: Network Theory and SARS: Predicting Outbreak Diversity. Journal of Theoretical Biology 232, 71–81 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Moreno, Y., Nekovee, M., Pacheco, A.F.: Dynamics of Rumor Spreading in Complex Networks. Physical Review E 69, 066130 (2004)CrossRefGoogle Scholar
  20. 20.
    Lind, P.G., da Silva, L.R., Andrade, J.S., Herrmann, H.J.: The Spread of Gossip in American Schools. Europhysics Letters 78, 68005 (2007)CrossRefGoogle Scholar
  21. 21.
    Kacperski, K., Hoyst, J.A.: Phase Transitions as a Persistent Feature of Groups with Leaders in Models of Opinion Formation. Physica A 287, 631–643 (2000)CrossRefGoogle Scholar
  22. 22.
    Newman, M.E.J., Forrest, S., Balthrop, J.: Email Networks and the Spread of Computer Viruses. Physical Review E 66, 035101 (2002)CrossRefGoogle Scholar
  23. 23.
    Crovella, M.E., Taqqu, M.S., Bestavros, A.: Heavy-Tailed Probability Distributions in the World Wide Web. In: A Practical Guide to Heavy Tails: Statistical Techniques and Applications, pp. 3–25 (1998)Google Scholar
  24. 24.
    Albert, R., Jeong, H., Barabási, A.-L.: Internet: Diameter of the World-Wide Web. Nature 401, 130–131 (1999)CrossRefGoogle Scholar
  25. 25.
    Tsai, Y., Lin, C.-C., Hsiao, P.-N.: Heavy Tail Distribution in Email Network. In: Proceedings of the 2002 SoftCOM, pp. 167–170 (2002)Google Scholar
  26. 26.
    Ebel, H., Mielsch, L.-I., Bornholdt, S.: Scale-Free Topology of E-mail Networks. Physical Review E 66, 035103 (2002)CrossRefGoogle Scholar
  27. 27.
    Albert, R., Barabási, A.-L.: Statistical Mechanics of Complex Networks. Reviews of Modern Physics 74, 48–97 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    The Opel Astra Club (2008),
  29. 29.
    Cassar, A.: Coordination and Cooperation in Local, Random and Small World Networks: Experimental Evidence. Games and Economic Behavior 58(2), 209–230 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zhou, H.: Scaling Exponents and Clustering Coefficients of a Growing Random Network. Physical Review E 66, 016125 (2002)CrossRefGoogle Scholar
  31. 31.
    Huysman, M., Wulf, V.: IT to Support Knowledge Sharing in Communities, Towards a Social Capital Analysis. Journal of Information Technology 21, 40–51 (2006)CrossRefGoogle Scholar
  32. 32.
    Cross, R.L., Parker, A., Borgatti, S.P.: A Bird’s-Eye View: Using Social Network Analysis to Improve Knowledge Creation and Sharing. Knowledge Directions 2(1), 48–61 (2000)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Ping-Nan Hsiao
    • 1
  1. 1.Research Center for Humanities and Social SciencesAcademia SinicaTaipeiTaiwan

Personalised recommendations