RNA Pseudoknot Folding through Inference and Identification Using TAGRNA

  • Sahar Al Seesi
  • Sanguthevar Rajasekaran
  • Reda Ammar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5462)


Studying the structure of RNA sequences is an important problem that helps in understanding the functional properties of RNA. After being ignored for a long time due to the high computational complexity it requires, pseudoknot is one type of RNA structures that has been given a lot of attention lately. Pseudoknot structures have functional importance since they appear, for example, in viral genome RNAs and ribozyme active sites. In this paper, we present a folding framework, TAGRNAInf, for RNA structures that support pseudoknots. Our approach is based on learning TAGRNA grammars from training data with structural information. The inferred grammars are used to indentify sequences with structures analogous to those in the training set and generate a folding for these sequences. We present experimental results and comparisons with other known pseudoknot folding approaches.


Structure Prediction Threshold Function Tobacco Rattle Virus Viral Genome RNAs Pseudoknot Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Al Seesi, S., Rajasekaran, S., Ammar, R.: Pseudoknot Identification through Learning TAGRNA. In: Chetty, M., Ngom, A., Ahmad, S. (eds.) PRIB 2008. LNCS (LNBI), vol. 5265, pp. 132–143. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Akutsu, T.: Dynamic Programming Algorithms for RNA Secondary Structure Prediction with Pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)CrossRefGoogle Scholar
  3. 3.
    Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington, J.C., Chen, X., Dreyfuss, G., Eddy, S.R., Griffiths-Jones, S., Marshall, M., Matzke, M., Ruvkun, G., Tuschl, T.: A Uniform System for microRNA Annotation. RNA 9(3), 277–279 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Batenburg, Dvan, F.H., Gultyaev, A.P., Pleij, C.W.A., Ng, J., Oliehoek, J.: Pseudobase: a Database with RNA Pseudoknots. Nucl. Acids Res. 28(1), 201–204 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Brazma, A., Jonassen, I., Vilo, J., Ukkonen, E.: Pattern Discovery in Biosequences. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS, vol. 1433, pp. 255–270. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Buratti, E., Dhir, A., Lewandowska, M.A., Baralle, F.E.: RNA Structure is a Key Regulatory Element in Pathological ATM and CFTR Pseudoexon Inclusion Events. Nucl. Acids Res. 35(13), 4369–4383 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Byun, Y., Han, K.: PseudoViewer: Web application and Web service for Visualizing RNA Pseudoknots and Secondary structures. Nucl. Acids Res. 34, W416–W422 (2006)CrossRefGoogle Scholar
  8. 8.
    Chiu, D., Kolodziejczak, T.: Inferring consensus structure from nucleic acid sequences. Comput. Appl. Biosci. 7, 347–352 (1991)PubMedGoogle Scholar
  9. 9.
    Dirks, R.M., Pierce, N.A.: A Partition Function Algorithm for Nucleic Acid Secondary Structure Including Pseudoknots. J. Comput. Chem 24(13), 1664–1677 (2003)CrossRefPubMedGoogle Scholar
  10. 10.
    Gilbert, W.: The RNA World. Nature 319, 618 (1986)CrossRefGoogle Scholar
  11. 11.
    Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R., Bateman, A.: Rfam: Annotating Non-coding RNAs in Complete Genomes. Nucl. Acids Res. 33, D121–D124 (2005)CrossRefGoogle Scholar
  12. 12.
    Gulko, B., Haussler, D.: Using multiple alignments and phylogenetic trees to detect RNA secondary structure. In: Proc. Pac. Symp. Biocomput. vol. 1, pp. 350–367Google Scholar
  13. 13.
    Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, S., Tacker, M., Schuster, P.: Fast Folding and Comparison of RNA Secondary Structures. Monatshefte f. Chemie 125, 167–188 (1994)CrossRefGoogle Scholar
  14. 14.
    Joshi, A.K., Levy, L., Takahashi, M.: Tree Adjunct Grammars. Journal of Computer and System Sciences 10, 136–163 (1975)CrossRefGoogle Scholar
  15. 15.
    Koenig, R., Commandeur, U., Loss, S., Beier, C., Kaufmann, A., Lesemann, D.-E.: Beet Soil-borne Virus RNA 2: Similarities and Dissimilarities to the Coat Protein Gene-carrying RNAs of other Furoviruses. J. Jen. Virol. 78, 469–477 (1997)CrossRefGoogle Scholar
  16. 16.
    Laxminarayana, J.A., Nagaraja, G., Balaji, P.V.: Identification of Pseudoknots in RNA Secondary Structures: A Grammatical Inference Approach. In: Mukherjee, D.P., Pal, S. (eds.) Proceedings of 5th International Conference on Advances in Pattern Recognition (2003)Google Scholar
  17. 17.
    Lyngso, R., Pedersen, C.: RNA pseudoknot prediction in energy-based models. J. Comput. Biol. 7, 409–427 (2000)CrossRefPubMedGoogle Scholar
  18. 18.
    Nussinov, R., Pieczenik, G., Griggs, J., Kleitman, D.: Algorithms for loop matchings. SIAM J. Appl. Math. 35, 68–82 (1978)CrossRefGoogle Scholar
  19. 19.
    Paillart, J.C., Skripkin, E., Ehresmann, B., Ehresmann, C., Marquet, R.: In vitro Evidence for a Long Range Pseudoknot in the 5’-Untranslated and Matrix Coding regions of HIV-1 Genomic RNA. J. Biol. Chem. 277, 5995–6004 (2002)CrossRefPubMedGoogle Scholar
  20. 20.
    Pedersen, J.S., Bejerano, G., Siepel, A., Rosenbloom, K., Lindblad-Toh, K., Lander, E.S., Kent, J., Miller, W., Haussler, D.: Identification and Classification of Conserved RNA Secondary Structures in the Human Genome. Public Library of Science. Computational Biology 2(4), e33 (2006)Google Scholar
  21. 21.
    Rajasekaran, S., Al Seesi, S., Ammar, R.: Improved Algorithms for Parsing ESLTAG: a grammatical model suitable for RNA pseudoknots. In: International Symposium on Bioinformatics Research and Applications, ISBRA (submitted, 2009)Google Scholar
  22. 22.
    Reeder, J., Giegerich, R.: Design, Implementation and Evaluation of a Practical Pseudoknot Folding Algorithm Based on Thermodynamics. BMC Bioinformatics 5, 104 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rivas, E., Eddy, S.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 258, 2053–2068 (1999)CrossRefGoogle Scholar
  24. 24.
    Robertson, M.P., Igel, H., Baertsch, R., Haussler, D., Ares, M., Scott Jr., W.G.: The Structure of a Rigorously Conserved RNA Element within the SARS Virus Genome. Public Library of Science: Biology 3(1), e5 (2004)Google Scholar
  25. 25.
    Ruan, J., Stormo, G.D., Zhang, W.: An Iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots. Bioinformatics 20(1), 58–66 (2004)CrossRefPubMedGoogle Scholar
  26. 26.
    Sakakibara, Y., Brown, M., Hughey, R., Mian, I.S., Sjolander, K., Underwood, R.C., Haussler, D.: Stochastic Context-Free Grammars for tRNA Modeling,” Nucl. Acids Res. 22, 5112–5120 (1994)CrossRefGoogle Scholar
  27. 27.
    Sakakibara, Y.: Grammatical Inference in Bioinformatics. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1051–1062 (2005)CrossRefPubMedGoogle Scholar
  28. 28.
    Searls, D.: The Linguistics of DNA. Am. Scient 80, 579–591 (1992)Google Scholar
  29. 29.
    Takakura, T., Asakawa, H., Seki, S., Kobayashi, S.: Efficient Tree Grammar Modeling of RNA Secondary Structures from Alignment Data. In: Proceedings of posters of RECOMB 2005, pp. 339–340 (2005)Google Scholar
  30. 30.
    Tanaka, Y., Hori, T., Tagaya, M., Sakamoto, T., Kurihara, Y., Katahira, M., Uesugi, S.: Imino Proton NMR Analysis of HDV Ribozymes: Nested Double Pseudoknot Structure and Mg2+ Ion-Binding Site Close to the Catalytic Core in Solution. Nucl. Acids Res. 30, 766–774 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree Adjoining Grammars for RNA Structure Prediction. Theoretical Computer Science 210(2), 277–303 (1999)CrossRefGoogle Scholar
  32. 32.
    van Belkum, A., Cornelissen, B., Linthorst, H., Bol, J., Pley, C., Bosch, L.: tRNA-like Properties of Tobacco Rattle Virus RNA. Nucl. Acids Res. 15(7), 2837–2850 (1987)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Vijay-Shanker, K., Joshi, A.K.: Some Computational Properties of Tree Adjoining Grammars. In: 23 rd Meeting of the Association for Computational Linguistics, pp. 82–93 (1985)Google Scholar
  34. 34.
    Williams, K.P.: The tmRNA Website: Invasion by an Intron. Nucl. Acids Res. 30(1), 179–182 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zuker, M., Stiegler, P.: Optimal computer folding of large RNAsequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sahar Al Seesi
    • 1
  • Sanguthevar Rajasekaran
    • 1
  • Reda Ammar
    • 1
  1. 1.Computer Science and Engineering DepartmentUniversity of ConnecticutUSA

Personalised recommendations