Advertisement

Facilitated Spin Models: Recent and New Results

  • N. CancriniEmail author
  • F. MartinelliEmail author
  • C. Robert
  • C. Toninelli
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1970)

Summary

Facilitated or kinetically constrained spin models (KCSM) are a class of interacting particle systems reversible w.r.t. to a simple product measure. Each dynamical variable (spin) is re-sampled from its equilibrium distribution only if the surrounding configuration fulfills a simple local constraint which does not involve the chosen variable itself. Such simple models are quite popular in the glass community since they display some of the peculiar features of glassy dynamics, in particular they can undergo a dynamical arrest reminiscent of the liquid/glass transition. Due to the fact that the jumps rates of the Markov process can be zero, the whole analysis of the long time behavior becomes quite delicate and, until recently, KCSM have escaped a rigorous analysis with the notable exception of the East model. In these notes we will mainly review several recent mathematical results which, besides being applicable to a wide class of KCSM, have contributed to settle some debated questions arising in numerical simulations made by physicists. We will also provide some interesting new extensions. In particular we will show how to deal with interacting models reversible w.r.t. to a high temperature Gibbs measure and we will provide a detailed analysis of the so called one spin facilitated model on a general connected graph.

Keywords

Gibbs Measure Spin Model Dirichlet Form Interact Particle System Glauber Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Asselah, P. Dai Pra Quasi-stationary measures for conservative dynamics in the infinite lattice, Ann. Probab. 29 (2001)no. 4, 1733–1754.MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Aizenman and J. L. Lebowitz, Metastability effects in bootstrap percolation, J. Phys. A 21 (1988), no. 19, 3801–3813. MR MR968311 (90e:82047)MathSciNetCrossRefGoogle Scholar
  3. 3.
    D. Aldous, slides available at http://www.math.ucsd.edu/∼williams/ diaconis/aldous-ising.pdf
  4. 4.
    D. Aldous and P. Diaconis, The asymmetric one-dimensional constrained Ising model: rigorous results, J. Statist. Phys. 107 (2002),. 5–6, 945–975. MR MR1901508 (2003e:82046)Google Scholar
  5. 5.
    L. Berthier and J. P. Garrahan, Non-topographic description of inherent structure dynamics in glass formers, J. Chem. Phys. 119 (2003), 4367–4371.CrossRefGoogle Scholar
  6. 6.
    L. Berthier, J. P. Garrahan, and S. Whitelam, Dynamic criticality in glass forming liquids, Phys. Rev. Lett. (2004), no. 92, 185705–185709.CrossRefGoogle Scholar
  7. 7.
    L. Bertini, N. Cancrini, and F. Cesi, The spectral gap for a Glauber-type dynamics in a continuous gas, Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), no. 1, 91–108. MR MR1899231 (2003d:82073)Google Scholar
  8. 8.
    G. Biroli, D. S. Fisher, and C. Toninelli, On the universality of jamming percolation: reply to the comment of jeng and schwarz, Phys. Rev. Lett. 2007 in press (preprint cond-mat/0612485).Google Scholar
  9. 9.
    G. Biroli and C. Toninelli, A new class of cellular automata with a discontinuous transition, preprint.Google Scholar
  10. 10.
    G. Biroli and C. Toninelli, Jamming percolation and glassy dynamics, J. Stat. Phys. (2006) in press, preprint cond-mat/0603860, 2006.Google Scholar
  11. 11.
    N. Cancrini, F. Martinelli, C. Roberto, and C. Toninelli, Kinetically constrained lattice gases, in preparation.Google Scholar
  12. 12.
    N. Cancrini, F. Martinelli, C. Roberto, and C. Toninelli, Kinetically constrained spin models, Probability Theory and Related Fields in press.Google Scholar
  13. 13.
    N. Cancrini, F. Martinelli, C. Roberto, and C. Toninelli, Relaxation times of kinetically constrained spin models with glassy dynamics, Journal of Statistical Mechanics: Theory and Experiment L03001 (2007).Google Scholar
  14. 14.
    R. Cerf and E. N. M. Cirillo, Finite size scaling in three-dimensional bootstrap percolation, Ann. Probab. 27 (1999), no. 4, 1837–1850. MR MR1742890 (2001b:82047)MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Cerf and F. Manzo, The threshold regime of finite bootstrap percolationStochastic Process. Appl. 101 (2002), 69–82.MathSciNetCrossRefGoogle Scholar
  16. 16.
    F. Chung, P. Diaconis, and R. Graham, Combinatorics for the East model, Adv. in Appl. Math. 27 (2001), no. 1, 192–206. MR MR1835679 (2002g:82035)MathSciNetCrossRefGoogle Scholar
  17. 17.
    C. Toninelli, Bootstrap and jamming percolation, Complex Systems, Session LXXXV, Lecture Notes of Houches Summer School, Elsevier, Berlin, July 2006.Google Scholar
  18. 18.
    S. Eisinger and J. Jackle, A hierarchically constrained kinetic ising model, Z. Phys. 84 (1991), 115–124.zbMATHGoogle Scholar
  19. 19.
    G. H. Fredrickson and H. C. Andersen, Kinetic ising model of the glass transition, Phys. Rev. Lett. 53 (1984), 1244–1247.CrossRefGoogle Scholar
  20. 20.
    G. H. Fredrickson and H. C. Andersen, Facilitated kinetic ising models and the glass transition, J. Chem. Phys. 83 (1985), 5822–5831.CrossRefGoogle Scholar
  21. 21.
    I. S. Graham, M. Grant, and L. Piché, Model for dynamics of structural glasses, Phys. Rev. 55 (1997), 2132–2144.CrossRefGoogle Scholar
  22. 22.
    G. Grimmett, Percolation, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321, Springer-Verlag, Berlin, 1999. MR MR1707339 (2001a:60114)CrossRefGoogle Scholar
  23. 23.
    P. Harrowell, Visualizing the collective motion responsible for α and β relaxations in a model glass, Phys. Rev. E 48 (1993), 4359–4363.Google Scholar
  24. 24.
    A. E. Holroyd, Sharp metastability threshold for two-dimensional bootstrap percolation, Probab. Theory Related Fields 125 (2003), no. 2, 195–224. MR MR1961342 (2003k:60257)MathSciNetCrossRefGoogle Scholar
  25. 25.
    J. Jackle, F. Mauch, and J. Reiter, Blocking transitions in lattice spin models with directed kinetic constraints, Physica. A 184 (1992), no. 3–4, 458–476.Google Scholar
  26. 26.
    G. Kordzakhia and S. Lalley, Ergodicity and mixing properties of the north-east models, preprint, 2006.Google Scholar
  27. 27.
    T. M. Liggett, Interacting particle systems, Springer-Verlag, New York, 1985. MR 86e:60089Google Scholar
  28. 28.
    F. Martinelli, Lectures on Glauber dynamics for discrete spin models, Lectures on probability theory and statistics (Saint-Flour, 1997), Springer, Berlin, 1999, pp. 93–191. MR 2002a:60163Google Scholar
  29. 29.
    F. Martinelli and E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region. I. The attractive case, Comm. Math. Phys. 161 (1994), no. 3, 447–486. MR MR1269387 (96c:82040)MathSciNetCrossRefGoogle Scholar
  30. 30.
    F. Martinelli and E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region. II. The general case, Comm. Math. Phys. 161 (1994), no. 3, 487–514. MR MR1269388 (96c:82041)MathSciNetCrossRefGoogle Scholar
  31. 31.
    F. Martinelli, E. Olivieri, and R. H. Schonmann, For 2-D lattice spin systems weak mixing implies strong mixing, Comm. Math. Phys. 165 (1994), no. 1, 33–47. MR MR1298940 (95j:82015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    F. Ritort and P. Sollich, Glassy dynamics of kinetically constrained models, Advances in Physics 52 (2003), no. 4, 219–342.CrossRefGoogle Scholar
  33. 33.
    L. Saloff-Coste, Lectures on finite Markov chains, Lectures on probability theory and statistics (Saint-Flour, 1996), Springer, Berlin, 1997, pp. 301–413. MR 99b:60119Google Scholar
  34. 34.
    R. H. Schonmann, On the behavior of some cellular automata related to bootstrap percolation, Ann. Probab. 20 (1992), no. 1, 174–193. MR MR1143417 (93b:60231)MathSciNetCrossRefGoogle Scholar
  35. 35.
    B. Simon, The statistical mechanics of lattice gases. Vol. I, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1993. MR MR1239893 (95a:82001)Google Scholar
  36. 36.
    P. Sollich and M. R. Evans, Glassy time-scale divergence and anomalous coarsening in a kinetically constrained spin chain, Phys. Rev. Lett 83 (1999), 3238–3241.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1. Dip. Matematica Univl’AquilaItaly
  2. 2.Dip. MatematicaUniv. Roma Tre, Largo S.L. MurialdoPragueCzech Republic
  3. 3. Universite Paris-est, L.A.M.A. UMR 8050France
  4. 4. Laboratoire de Probabilit´es et Mod`eles Al`eatoires CNRS-UMR 7599 12Universit´es Paris VI-VII 4, Place Jussieu F-75252 Paris Cedex 05France

Personalised recommendations