A Selection of Nonequilibrium Issues

  • Christian MaesEmail author
  • Karel  Netoˇcn´yEmail author
  • Bidzina Shergelashvili
Part of the Lecture Notes in Mathematics book series (LNM, volume 1970)


We give a pedagogical introduction to a selection of recently discussed topics in nonequilibrium statistical mechanics, concentrating mostly on formal structures and on general principles. Part I contains an overview of the formalism of lattice gases that we use to explain various symmetries and inequalities generally valid for nonequilibrium systems, including the fluctuation symmetry, Jarzynski equality, and the direction of currents. That mostly concerns the time-antisymmetric part of dynamical fluctuation theory.We also briefly comment on recent attempts to combine that with the time-symmetric sector in a Langrangian or extended Onsager-Machlup approach. In Part II we concentrate on the macroscopic state and how entropy provides a bridge between microscopic dynamics and macroscopic irreversibility; included is a construction of quantum macroscopic states and a result on the equivalence of ensembles.


Entropy Production Detailed Balance Macroscopic State Nonequilibrium Statistical Mechanic Canonical State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Macroscopic fluctuation theory for stationary non-equilibrium states, J. Stat. Phys. 107, 635–675 (2002).MathSciNetCrossRefGoogle Scholar
  2. 2.
    I. Bjelaković, J. D. Deuschel, T. Krüger, S. Seiler, R. Siegmund-Schultze, A. Szkola, A quantum version of Sanov's theorem, Commun. Math. Phys. 260, 659–671 (2005).MathSciNetCrossRefGoogle Scholar
  3. 3.
    I. Bjelaković, J. D. Deuschel, T. Krüger, S. Seiler, R. Siegmund-Schultze, A. Szkola, The Shannon-McMillan theorem for ergodic quantum lattice systems, Invent. Math. 155 (1), 203–202 (2004).MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Bovier, F. den Hollander and F. Nardi, Sharp asymptotics for Kawasaki dynamics on a finite box with open boundary conditions, Prob. Th. Rel. Fields. 135, 265–310 (2006).CrossRefGoogle Scholar
  5. 5.
    O. Bratelli, D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Volume 2, Springer, Berlin (1979).CrossRefGoogle Scholar
  6. 6.
    J. Bricmont, Science of chaos or chaos in science, In: The Flight from Science and Reason, Ann. N.Y. Academy of Science, 79, 731 (1996).Google Scholar
  7. 7.
    G. E. Crooks, Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems, J. Stat. Phys. 90, 1481 (1998).MathSciNetCrossRefGoogle Scholar
  8. 8.
    N. Datta, Quantum entropy and quantum information, In: Les Houches, Session LXXXIII, 2005, Eds. A. Bovier, F. Dunlop, F. den Hollander, A. van Enter, and J. Dalibard, pp. 395–465 (2006).Google Scholar
  9. 9.
    A. Dembo and O. Zeitouni, Large Deviation Techniques and Applications, Jones and Barlett Publishers, Boston (1993).zbMATHGoogle Scholar
  10. 10.
    W. De Roeck, C. Maes, and K. Netočný, An extension of the Kac ring model, J. Phys. A: Math. Gen. 36, 1–13 (2003).MathSciNetCrossRefGoogle Scholar
  11. 11.
    W. De Roeck, C. Maes, and K. Netočný, H-theorems from macroscopic autonomous equations, J. Stat. Phys. 123, 571–584 (2006).MathSciNetCrossRefGoogle Scholar
  12. 12.
    W. De Roeck, C. Maes, and K. Netočný, Quantum macrostates, equivalence of ensembles and an H-theorem, J. Math. Phys. 47, 073303 (2006).MathSciNetCrossRefGoogle Scholar
  13. 13.
    B. Derrida, J. L. Lebowitz, and E. R. Speer, Free Energy Functional for Nonequilibrium Systems: An Exactly Soluble Case, Phys. Rev. Lett. 87, 150601 (2001); J. Stat. Phys. 107, 599 (2002).MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. D. Donsker, S. R. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time I., Comm. Pure Appl. Math. 28:1–47 (1975).MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Dresden, F. Feiock, Models in nonequilibrium quantum statistical mechanics, J. Stat. Phys. 4, 111–173 (1972).CrossRefGoogle Scholar
  16. 16.
    D. E. Evans, E. G. D. Cohen, and G. P. Morriss, Probability of second law violations in steady flows, Phys. Rev. Lett. 71, 2401–2404 (1993). cond-mat/9908420CrossRefGoogle Scholar
  17. 17.
    G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Lett. 74, 2694–2697 (1995); Dynamical ensembles in stationary states, J. Stat. Phys. 80, 931–970 (1995).CrossRefGoogle Scholar
  18. 18.
    P. L. Garrido, S. Goldstein and J. L. Lebowitz, The Boltzmann entropy for dense fluids not in local equilibrium, Phys. Rev. Lett. 92, 050602 (2003).CrossRefGoogle Scholar
  19. 19.
    H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter, New York (1988).Google Scholar
  20. 20.
    S. Goldstein and J. L. Lebowitz, On the (Boltzmann) entropy of nonequilibrium systems, Physica D 193, 53–56 (2004).MathSciNetCrossRefGoogle Scholar
  21. 21.
    S. R. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland Publishing Company (1962).Google Scholar
  22. 22.
    P. Hänggi, P. Talkner, and M. Borkovec, Reaction rate theory: fifty years after Kramers, Rev. of Mod. Phys. 62, 251–341 (1990).MathSciNetCrossRefGoogle Scholar
  23. 23.
    F. den Hollander, Large Deviations, Field Institute Monographs, Providence, Rhode Island (2000).Google Scholar
  24. 24.
    R. Israel, Convexity in the Theory of Lattice Gases, Princeton University Press (1978).Google Scholar
  25. 25.
    C. Jarzynski, Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 78, 2690–2693 (1997).CrossRefGoogle Scholar
  26. 26.
    E. T. Jaynes, The second law as physical fact and as human inference (1990) (unpublished), download from /bibliography.shtml.
  27. 27.
    E. T. Jaynes, The evolution of Carnot's principle, In: Maximum-Entropy and Bayesian Methods in Science and Engineering, 1, Eds. G. J. Erickson and C. R. Smith, Kluwer, Dordrecht, pp. 267–281 (1988).CrossRefGoogle Scholar
  28. 28.
    E. T. Jaynes, Gibbs vs Boltzmann entropies, In: Papers on Probability, Statistics and Statistical Physics, Reidel, Dordrecht (1983); Am. J. Phys. 33, 391–398 (1965).CrossRefGoogle Scholar
  29. 29.
    M. Kac. Probability and Related Topics in Physical Sciences, Interscience Publishers Inc., New York (1959).zbMATHGoogle Scholar
  30. 30.
    C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, Springer-Verlag, Berlin (1999).CrossRefGoogle Scholar
  31. 31.
    R. Kubo, K. Matsuo, and K. Kitahara, Fluctuation and Relaxation of Macrovariables, J. Stat. Phys. 9, 51–95 (1973).CrossRefGoogle Scholar
  32. 32.
    O. E. Lanford III, Time evolution of large classical systems, Lecture Notes in Phys. 38, 1–111 (1975); The hard sphere gas in the Boltzmann-Grad limit, Physica 106A, 70–76 (1981).CrossRefGoogle Scholar
  33. 33.
    J. L. Lebowitz, Microscoic origins of irreversible macroscopic behavior, Physica A 263, 516–527 (1999).MathSciNetCrossRefGoogle Scholar
  34. 34.
    J. L. Lebowitz, C. Maes, and E. R. Speer, Statistical mechanics of probabilistic cellular automata, J. Stat. Phys. 59 117–170 (1990).MathSciNetCrossRefGoogle Scholar
  35. 35.
    J. L. Lebowitz and H. Spohn, A Gallavotti-Cohen type symmetry in the large deviation functional for stochastic dynamics, J. Stat. Phys. 95, 333–365 (1999).MathSciNetCrossRefGoogle Scholar
  36. 36.
    T. M. Liggett, Interacting Particle Systems, Springer (1985).Google Scholar
  37. 37.
    R. Lima, Equivalence of ensembles in quantum lattice systems: states, Commun. Math. Phys. 24, 180–192 (1972).MathSciNetCrossRefGoogle Scholar
  38. 38.
    C. Maes, On the origin and the use of fluctuation relations for the entropy, Poincaré Seminar 2003, Eds. J. Dalibard, B. Duplantier and V. Rivasseau, Birkhäuser (Basel), pp. 145–191 (2004).CrossRefGoogle Scholar
  39. 39.
    C. Maes. Fluctuation theorem as a Gibbs property, J. Stat. Phys. 95, 367–392 (1999).MathSciNetCrossRefGoogle Scholar
  40. 40.
    C. Maes and K. Netočný, Time-reversal and entropy, J. Stat. Phys. 110, 269–310 (2003).MathSciNetCrossRefGoogle Scholar
  41. 41.
    C. Maes and K. Netočný, Static and dynamical nonequilibrium fluctuations, cond-mat/0612525.Google Scholar
  42. 42.
    C. Maes, K. Netočný, and M. Verschuere, Heat conduction networks, J. Stat. Phys. 111, 1219–1244 (2003).MathSciNetCrossRefGoogle Scholar
  43. 43.
    C. Maes, F. Redig, and A. Van Moffaert, On the definition of entropy production via examples, J. Math. Phys. 41, 1528–1554 (2000).MathSciNetCrossRefGoogle Scholar
  44. 44.
    C. Maes, F. Redig, and A. Van Moffaert, The restriction of the Ising model to a layer, J. Stat. Phys. 96, 69–107 (1999).MathSciNetCrossRefGoogle Scholar
  45. 45.
    C. Maes and K. Netočný, The canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states, Europhysics Letters 82, 30003 (2008).MathSciNetCrossRefGoogle Scholar
  46. 46.
    C. Maes, K. Netočný and B. Wynants, On and beyond entropy production; the case of Markov jump processes, to appear in Markov Processes and Related Fields (2008).Google Scholar
  47. 47.
    C. Maes and K. Netočný, Minimum entropy production principle from a dynamical fluctuation law, J.Math.Phys. 48, 053306 (2007).MathSciNetCrossRefGoogle Scholar
  48. 48.
    C. Maes, K. Netočný and B. Wynants, Steady state statistics of driven diffusion, Physica A 387, 2675–2689 (2008).MathSciNetCrossRefGoogle Scholar
  49. 49.
    K. Netočný and F. Redig, Large deviations for quantum spin systems, J. Stat. Phys. 117, 521–547 (2004).MathSciNetCrossRefGoogle Scholar
  50. 50.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics, Translated form the German edition by R. T. Beyer, Princeton University Press, Princeton(1955).zbMATHGoogle Scholar
  51. 51.
    D. Petz, G. A. Raggio, and A. Verbeure, Asymptotics of Varadhan-type and the Gibbs variational principle, Comm. Math. Phys. 121, 271-?282 (1989) .MathSciNetCrossRefGoogle Scholar
  52. 52.
    I. Prigogine, Introduction to Non-Equilibrium Thermodynamics, Wiley-Interscience, New York (1962).zbMATHGoogle Scholar
  53. 53.
    M. Lenci, L. Rey-Bellet, Large deviations in quantum lattice systems: one-phase region, J. Stat. Phys., 119, 715–746 (2005).MathSciNetCrossRefGoogle Scholar
  54. 54.
    D. Ruelle, Smooth dynamics and new rheoretical ideas in nonequilibrium statistical mechanics, J. Stat. Phys. 95, 393–468 (1999).CrossRefGoogle Scholar
  55. 55.
    B. Simon, The Statistical Mechanics of Lattice Gases, Princeton Univ. Press Princeton, (1993).zbMATHGoogle Scholar
  56. 56.
    H. Spohn, Large Scale Dynamics of Interacting Particles, Springer Verlag Heidelberg, (1991).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1. Instituut voor Theoretische Fysica K. U. LeuvenBelgium
  2. 2.Institute of Physics AS CRPragueCzech Republic

Personalised recommendations