Advertisement

Reflection Positivity and Phase Transitions in Lattice Spin Models

  • Marek BiskupEmail author
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1970)

Abstract

Phase transitions are one of the most fascinating, and also most perplexing, phenomena in equilibrium statistical mechanics. On the physics side, many approximate methods to explain or otherwise justify phase transitions are known but a complete mathematical understanding is available only in a handful of simplest of all cases. One set of tractable systems consists of the so called lattice spin models. Originally, these came to existence as simplified versions of (somewhat more realistic) models of crystalline materials in solid state physics but their versatile nature earned them a life of their own in many other disciplines where complex systems are of interest.

The present set of notes describes one successful mathematical approach to phase transitions in lattice spin models which is based on the technique of reflection positivity. This technique was developed in the late 1970s in the groundbreaking works of F. Dyson, J. Fr¨ohlich, R. Israel, E. Lieb, B. Simon and T. Spencer who used it to establish phase transitions in a host of physically-interesting classical and quantum lattice spin models; most notably, the classical Heisenberg ferromagnet and the quantum XY model and Heisenberg antiferromagnet. Other powerful techniques — e.g., Pirogov-Sinai theory, lace expansion or multiscale analysis in field theory — are available at present that can serve a similar purpose in related contexts, but we will leave their review to experts in those areas

Keywords

Phase Transition Lattice Model Ising Model Gibbs Measure Phase Coexistence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.B Abrahamand O.J. Heilmann, Interacting dimers on the simple cubic lattice as a model for liquid crystals, J. Phys. A: Math. Gen. 13 (1980) 1051–1062.Google Scholar
  2. 2.
    M. Aizenman, Geometric analysis of π 4 fields and Ising models. I, II., Commun. Math. Phys. 86 (1982) 1–48.MathSciNetzbMATHGoogle Scholar
  3. 3.
    M. Aizenman, J.T. Chayes, L. Chayes and C.M. Newman, Discontinuity of the magnetization in one-dimensional 1/|x – y|2 Ising and Potts models, J. Statist. Phys. 50 (1988), no. 1–21–40.MathSciNetzbMATHGoogle Scholar
  4. 4.
    M. Aizenman and R. Fernández, On the critical behavior of the magnetization in high-dimensional Ising models, J. Statist. Phys. 44 (1986) 393–454.MathSciNetzbMATHGoogle Scholar
  5. 5.
    M. Aizenman and R. Fernández, Critical exponents for long-range interactions Lett. Math. Phys. 16 (1988)no. 1 39–49.MathSciNetzbMATHGoogle Scholar
  6. 6.
    N. Angelescu and V.A. Zagrebnov, A lattice model of liquid crystals with matrix order parameter, J. Phys. A 15 (1982)no. 11 L639–L643.MathSciNetGoogle Scholar
  7. 7.
    M. Biskup, Reflection positivity of the random-cluster measure invalidated for non-integer q, J. Statist. Phys. 92 (1998) 369–375.MathSciNetzbMATHGoogle Scholar
  8. 8.
    M. Biskup, C. Borgs, J.T. Chayes and R. Kotecký, Gibbs states of graphical representations of the Potts model with external fields, J. Math. Phys. 41 (2000)no. 3, 1170–1210.MathSciNetzbMATHGoogle Scholar
  9. 9.
    M. Biskup and L. Chayes, Rigorous analysis of discontinuous phase transitions via mean-field bounds, Commun. Math. Phys. 238 (2003)no. 1–2, 53–93.MathSciNetzbMATHGoogle Scholar
  10. 10.
    M. Biskup, L. Chayes and N. Crawford, Mean-field driven first-order phase transitions in systems with long-range interactions, J. Statist. Phys. 122 (2006)no. 6, 1139–1193.MathSciNetzbMATHGoogle Scholar
  11. 11.
    M. Biskup, L. Chayes, and S.A. Kivelson, Order by disorder, without order, in a two-dimensional spin system with O(2)-symmetry, Ann. Henri Poincaré 5 (2004) no. 6,1181–1205.MathSciNetzbMATHGoogle Scholar
  12. 12.
    M. Biskup, L. Chayes, and R. Kotecký, Coexistence of partially disordered/ordered phases in an extended Potts model, J. Statist. Phys. 99 (2000)no. 5/6, 1169–1206.MathSciNetzbMATHGoogle Scholar
  13. 13.
    M. Biskup, L. Chayes, and Z. Nussinov, Orbital ordering in transition-metal compounds: I. The 120-degree model, Commun. Math. Phys. 255 (2005)no. 2, 253–292.MathSciNetzbMATHGoogle Scholar
  14. 14.
    M. Biskup, L. Chayes and Z. Nussinov, Orbital ordering in transitionmetal compounds: II. The orbital compass model, in preparation.Google Scholar
  15. 15.
    M. Biskup, L. Chayes and S. Starr, Quantum spin systems at positive temperature, Commun. Math. Phys. 269 (2007)no. 3, 611–657MathSciNetzbMATHGoogle Scholar
  16. 16.
    M. Biskup and R. Kotecký, Forbidden gap argument for phase transitions proved by means of chessboard estimates, Commun. Math. Phys. 264 (2006)no. 3, 631–656.MathSciNetzbMATHGoogle Scholar
  17. 17.
    M. Biskup and R. Kotecký, Phase coexistence of gradient Gibbs states, Probab. Theory Rel. Fields. 139 (2007)no. 1–2, 1–39.MathSciNetzbMATHGoogle Scholar
  18. 18.
    M. Biskup and H. Spohn, Scaling limit for a class of gradient fields with non-convex potentials, Ann. Probab. (to appear)Google Scholar
  19. 19.
    T. Bodineau, Translation invariant Gibbs states for the Ising model, Probab. Theory Related Fields. 135 (2006)no. 2, 153–168.MathSciNetzbMATHGoogle Scholar
  20. 20.
    C. Borgs and E. Seiler, Quark deconfinement at high temperature: a rigorous proof, Nucl. Phys. B 215 (1983)no. 1, 125–135.MathSciNetGoogle Scholar
  21. 21.
    J. Bricmont and J.-R. Fontaine, Infrared bounds and the Peierls argument in two dimensions, Commun. Math. Phys. 87 (1982/83)no. 3, 417–427.MathSciNetzbMATHGoogle Scholar
  22. 22.
    J. Bricmont, H. Kesten, J.L. Lebowitz and R.H. Schonmann, A note on the Ising model in high dimensions, Commun. Math. Phys. 122 (1989) 597–607.MathSciNetzbMATHGoogle Scholar
  23. 23.
    R.M. Burton and M. Keane, Density and uniqueness in percolation, Commun. Math. Phys. 121 (1989)no. 3, 501–505.MathSciNetzbMATHGoogle Scholar
  24. 24.
    L. Chayes, Mean field analysis of low dimensional systems, Commun. Math. Phys. (to appear)Google Scholar
  25. 25.
    L. Chayes, R. Kotecký, and S. B. Shlosman. Staggered phases in diluted systems with continuous spins, Commun. Math. Phys. 189 (1997) 631–640.zbMATHGoogle Scholar
  26. 26.
    L. Chayes and J. Machta, Graphical representations and cluster algorithms. Part I: Discrete spin systems, Physica. A 239 (1997) 542–601.Google Scholar
  27. 27.
    J.G. Conlon and J.P. Solovej, On asymptotic limits for the quantum Heisenberg model, J. Phys. (1990)no. 14, 3199–3213.MathSciNetzbMATHGoogle Scholar
  28. 28.
    P. Curie, Propriétés magnétiques des corps a diverses températures, Ann. de Chimie et Physique 5 (1885) 289; reprinted in Œuvres de Pierre Curie (Gauthier-Villars, Paris, 1908) pp. 232–334.Google Scholar
  29. 29.
    A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications (Springer Verlag, Inc., New York, 1998).zbMATHGoogle Scholar
  30. 30.
    J.-D. Deuschel and D.W. Stroock, Large deviations, Pure and Applied Mathematics, 137. Academic Press, Inc., Boston, MA, 1989.Google Scholar
  31. 31.
    J. Dimock, and T. R. Hurd, Sine-Gordon revisited, Ann. Henri Poincaré. 1 (2000)no. 3, 499–541.MathSciNetzbMATHGoogle Scholar
  32. 32.
    R. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity, Theor. Prob. Appl. 13 (1968)no. 4, 197–224.MathSciNetzbMATHGoogle Scholar
  33. 33.
    R.L. Dobrushin and S.B. Shlosman, Phases corresponding to minima of the local energy, Selecta Math. Soviet. 1 (1981)no. 1, 317–338.MathSciNetGoogle Scholar
  34. 34.
    R.L. Dobrushin and S. Shlosman, Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics, Commun. Math. Phys. 42 (1975) 31–40.MathSciNetGoogle Scholar
  35. 35.
    R.L. Dobrushin and M. Zahradník, Phase diagrams for continuous-spin models: an extension of the Pirogov-Sinaĭ theory, In: R.L. Dobrushin (ed.), Mathematical problems of statistical mechanics and dynamics, pp. 1–123, Math. Appl. (Soviet Ser.), vol. 6, Reidel, Dordrecht, 1986.Google Scholar
  36. 36.
    R. Durrett, Probability: Theory and Examples, Second edition. Duxbury Press, Belmont, CA, 1996.Google Scholar
  37. 37.
    F.J. Dyson, General theory of spin-wave interactions, Phys. Rev. 102 (1956)no. 5, 1217–1230.MathSciNetzbMATHGoogle Scholar
  38. 38.
    F.J. Dyson, E.H. Lieb and B. Simon, Phase transitions in quantum spin systems with isotropic and nonisotropic interactions, J. Statist. Phys. 18 (1978) 335–383.MathSciNetGoogle Scholar
  39. 39.
    R.G. Edwards and A.D. Sokal, Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm, Phys. Rev. D 38 (1988) 2009–2012.MathSciNetGoogle Scholar
  40. 40.
    R.S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, Grundlehren der Mathematischen Wissenschaften, vol. 271 (Springer-Verlag, New York, 1985).zbMATHGoogle Scholar
  41. 41.
    A.C.D. van Enter and S.B. Shlosman, First-order transitions for n-vector models in two and more dimensions: Rigorous proof, Phys. Rev. Lett. 89 (2002) 285702.Google Scholar
  42. 42.
    A.C.D. van Enter and S.B. Shlosman, Provable first-order transitions for nonlinear vector and gauge models with continuous symmetries, Commun. Math. Phys. 255 (2005) 21–32.MathSciNetzbMATHGoogle Scholar
  43. 43.
    C.M. Fortuin and P.W. Kasteleyn, On the random cluster model. I. Introduction and relation to other models, Physica (Amsterdam). 57 (1972) 536–564.MathSciNetGoogle Scholar
  44. 44.
    M. Freedman, L. Lovász and A. Schrijver, Reflection positivity, rank connectivity, and homomorphism of graphs, J. Amer. Math. Soc. 20 (2007)no. 1, 37–51.MathSciNetzbMATHGoogle Scholar
  45. 45.
    J. Fröhlich, On the triviality of λφ4 d theories and the approach to the critical point in d≥4 dimensions, Nucl. Phys. B 200 (1982)no. 2, 281–296.MathSciNetGoogle Scholar
  46. 46.
    J. Fröhlich, R. Israel, E.H. Lieb and B. Simon, Phase transitions and reflection positivity. I. General theory and long-range lattice models, Commun. Math. Phys. 62 (1978)no. 1, 1–34.MathSciNetGoogle Scholar
  47. 47.
    J. Fröhlich, R. Israel, E.H. Lieb and B. Simon, Phase transitions and reflection positivity. II. Lattice systems with short-range and Coulomb interactions, J. Statist. Phys. 22 (1980)np. 3, 297–347.MathSciNetGoogle Scholar
  48. 48.
    J. Fröhlich and E.H. Lieb, Phase transitions in anisotropic lattice spin systems, Commun. Math. Phys. 60 (1978)no. 3, 233–267.MathSciNetGoogle Scholar
  49. 49.
    J. Fröhlich and C.-E. Pfister, On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems, Commun. Math. Phys. 81 (1981)no. 2, 277–298.MathSciNetGoogle Scholar
  50. 50.
    J. Fröhlich, B. Simon and T. Spencer, Infrared bounds, phase transitions and continuous symmetry breaking, Commun. Math. Phys. 50 (1976) 79–95.MathSciNetGoogle Scholar
  51. 51.
    J. Fröhlich and T. Spencer, The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the Coulomb gas, Commun. Math. Phys. 81 (1981)no. 4, 527–602.MathSciNetGoogle Scholar
  52. 52.
    T. Funaki, Stochastic Interface Models, Lecture Notes for the International Probability School at Saint-Flour, Lecture Notes in Math., 1869, Springer, Berlin, 2005.Google Scholar
  53. 53.
    T. Funaki and H. Spohn, Motion by mean curvature from the Ginzburg-Landauφ interface model, Commun. Math. Phys. 185 (1997) 1–36.MathSciNetzbMATHGoogle Scholar
  54. 54.
    D. Galvin and J. Kahn, On phase transition in the hard-core model on Z d, Combin. Probab. Comput. 13 (2004)no. 2, 137–164.MathSciNetzbMATHGoogle Scholar
  55. 55.
    D. Galvin and D. Randall, Torpid mixing of local markov chains on 3-Colorings of the discrete torus, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), to appear.Google Scholar
  56. 56.
    P.G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford University Press, New York, 1993.Google Scholar
  57. 57.
    H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics, vol. 9(Walter de Gruyter & Co., Berlin, 1988).Google Scholar
  58. 58.
    T. Gobron and I. Merola, First-order phase transition in Potts models with finite-range interactions, J. Statist. Phys. 126 (2007)no. 3, 507–583.MathSciNetzbMATHGoogle Scholar
  59. 59.
    R.B. Griffiths, Peierls proof of spontaneous magnetization in a two-dimensional Ising ferromagnet, Phys. Rev. (2) 136 (1964) A437–A439.MathSciNetzbMATHGoogle Scholar
  60. 60.
    R.B. Griffiths, Correlations in Ising ferromagnets, J. Math. Phys. 8 (1967)no. 3, 478–483.Google Scholar
  61. 61.
    G. Grimmett, The Random-Cluster Model, Grundlehren der Mathematischen Wissenschaften, vol. 333, Springer-Verlag, Berlin, 2006Google Scholar
  62. 62.
    O.J. Heilmann and E.H. Lieb, Lattice models for liquid crystals, J. Statist. Phys. 20 (1979)no. 6, 679–693.MathSciNetGoogle Scholar
  63. 63.
    C.L. Henley, Ordering due to disorder in a frustrated vector antiferromagnet, Phys. Rev. Lett. 62 (1989) 2056–2059.Google Scholar
  64. 64.
    F. den Hollander, Large deviations, Fields Institute Monographs, 14. American Mathematical Society, Providence, RI, 2000.Google Scholar
  65. 65.
    D. Ioffe, S. Shlosman and Y. Velenik, 2D models of statistical physics with continuous symmetry: The case of singular interactions, Commun. Math. Phys. 226 (2002)no. 2, 433–454.MathSciNetzbMATHGoogle Scholar
  66. 66.
    R.B. Israel, Convexity in the theory of lattice gases, With an introduction by Arthur S. Wightman. Princeton University Press, Princeton, N.J., 1979.zbMATHGoogle Scholar
  67. 67.
    T. Kennedy, Long range order in the anisotropic quantum ferromagnetic Heisenberg model, Commun. Math. Phys. 100 (1985) 447–462.MathSciNetGoogle Scholar
  68. 68.
    T. Kennedy, E.H. Lieb and B.S. Shastry, Existence of Néel order in some spinHeisenberg antiferromagnets, J. Statist. Phys. 53 (1988)no. 3, 1019–1030,MathSciNetGoogle Scholar
  69. 69.
    H. Kesten and R. Schonmann, Behavior in large dimensions of the Potts and Heisenberg models, Rev. Math. Phys. 1 (1990)no. 5–6 147–182.MathSciNetzbMATHGoogle Scholar
  70. 70.
    M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C: Solid State Phys. 6 (1973) 1181–1203.Google Scholar
  71. 71.
    R. Kotecký and S.B. Shlosman, Existence of first-order transitions for Potts models, In: S. Albeverio, Ph. Combe, M. Sirigue-Collins (eds.), Proc. of the International Workshop—Stochastic Processes in Quantum Theory and Statistical Physics, Lecture Notes in Physics 173, 248–253, Springer-Verlag, Berlin-Heidelberg-New York, 1982.Google Scholar
  72. 72.
    R. Kotecký and S.B. Shlosman, First-order phase transitions in large entropy lattice models, Commun. Math. Phys. 83 (1982)no. 4, 493–515.MathSciNetGoogle Scholar
  73. 73.
    U. Krengel, Ergodic theorems, de Gruyter Studies in Mathematics, 6. Walter de Gruyter & Co., Berlin, 1985.zbMATHGoogle Scholar
  74. 74.
    C. Külske, The continuous spin random field model: Ferromagnetic ordering in d ≥ 3, Rev. Math. Phys. 11 (1999)no. 10, 1269–1314.MathSciNetzbMATHGoogle Scholar
  75. 75.
    C. Külske, Stability for a continuous SOS-interface model in a randomly perturbed periodic potential, WIAS Preprint no. 466 (1998); http://www.math.rug.nl/∼kuelske/publications.html
  76. 76.
    G.L. Lawler, Intersections of random walks, Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1991.zbMATHGoogle Scholar
  77. 77.
    E.H. Lieb, Two theorems on the Hubbard model, Phys. Rev. Lett. 62 (1989), no. 10, 1201–1204. Errata: Phys. Rev. Lett. 62 (1989), no. 16, 1927.MathSciNetGoogle Scholar
  78. 78.
    E.H. Lieb, Flux phase of the half-filled band, Phys. Rev. Lett. 73 (1994) 2158-2161.Google Scholar
  79. 79.
    N. Macris, Periodic ground states in simple models of itinerant fermions interacting with classical fields, The nature of crystalline states (Kudowa-Zdrój, 1995). Phys. 232 (1996)no. 3–4, 648–656.MathSciNetGoogle Scholar
  80. 80.
    N. Macris and J. Lebowitz, Ground states and low-temperature phases of itinerant electrons interacting with classical fields: a review of rigorous results, Quantum problems in condensed matter physics, J. Math. Phys. 38 (1997)no. 4, 2084–210.MathSciNetzbMATHGoogle Scholar
  81. 81.
    N. Macris and B. Nachtergaele, On the flux phase conjecture at half-filling: an improved proof, J. Statist. Phys. 85 (1996) 745–761.MathSciNetzbMATHGoogle Scholar
  82. 82.
    N.D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17 (1966)no. 22, 1133–1136.Google Scholar
  83. 83.
    Z. Nussinov, M. Biskup, L. Chayes and J. van den Brink, Orbital order in classical models of transition-metal compounds, Europhys. Lett. 67 (2004)no. 6, 990–996.Google Scholar
  84. 84.
    K. Osterwalder and R. Schrader, Axioms for Euclidean Green's functions, Commun. Math. Phys. 31 (1973), 83–112.MathSciNetzbMATHGoogle Scholar
  85. 85.
    A. Patrasciou and E. Seiler, Percolation theory and the existence of a soft phase in 2D spin models, Nucl. Phys. B (Proc. Suppl.). 30 (1993) 184–191.Google Scholar
  86. 86.
    K. Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, 2. Cambridge University Press, Cambridge, 1989.Google Scholar
  87. 87.
    C.-E. Pfister, On the symmetry of the Gibbs states in two-dimensional lattice systems, Commun. Math. Phys. 79 (1981)no. 2, 181–188.MathSciNetGoogle Scholar
  88. 88.
    D. Ruelle, Thermodynamic formalism. The mathematical structures of equilibrium statistical mechanics, Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 200Google Scholar
  89. 89.
    D. Ruelle, Statistical mechanics. Rigorous results, Reprint of the 1989 edition, World Scientific Publishing Co., Inc., River Edge, NJ; Imperial College Press, London, 1999.Google Scholar
  90. 90.
    A. Sakai, Lace expansion for the Ising model, Commun. Math. Phys. 272 (2007)no. 2, 283–344.MathSciNetzbMATHGoogle Scholar
  91. 91.
    M. Salmhofer and E. Seiler, Proof of chiral symmetry breaking in strongly coupled lattice gauge theory, Commun. Math. Phys. 139 (1991), no. 2, 395–432. Errata: ibid 146 (1992), no. 3, 637–638.MathSciNetzbMATHGoogle Scholar
  92. 92.
    S. Sheffield, Random Surfaces, Asterisque 2005, No. 304, 177pp.Google Scholar
  93. 93.
    E.F. Shender, Antiferromagnetic garnets with fluctuationally interacting sublattices, Sov. Phys. JETP 56 (1982) 178–184.Google Scholar
  94. 94.
    S. Shlosman, Phase transitions for two-dimensional models with isotropic short range interactions and continuous symmetry, Commun. Math. Phys. 71 (1980) 207–212.Google Scholar
  95. 95.
    S.B. Shlosman, The method of reflective positivity in the mathematical theory of phase transitions of the first kind (Russian), Uspekhi Mat. Nauk 41 (1986), no. 3(249), 69–111, 240.MathSciNetGoogle Scholar
  96. 96.
    S. Shlosman and Y. Vignaud, Dobrushin interfaces via reflection positivity, Commun. Math. Phys. 276 (2007)no. 3, 827–86.MathSciNetzbMATHGoogle Scholar
  97. 97.
    B. Simon, The statistical mechanics of lattice gases, Vol. I., Princeton Series in Physics (Princeton University Press, Princeton, NJ, 1993).Google Scholar
  98. 98.
    A.D. Sokal, An alternate constructive approach to the φ3 4 quantum field theory, and a possible destructive approach to φ4 4, Ann. Inst. H. Poincaré Sect. 37 (1982)no. 4, 317–398.MathSciNetGoogle Scholar
  99. 99.
    E.R. Speer, Failure of reflection positivity in the quantum Heisenberg ferromagnet, Lett. Math. Phys. 10 (1985)no. 1, 41–47.MathSciNetGoogle Scholar
  100. 100.
    F. Spitzer, Principles of random walks, Second edition. Graduate Texts in Mathematics, Vol. 34. Springer-Verlag, New York-Heidelberg, 1976.Google Scholar
  101. 101.
    H. Tasaki, Ferromagnetism in the Hubbard model: a constructive approach, Commun. Math. Phys. 242 (2003)no. 3, 445–472.MathSciNetzbMATHGoogle Scholar
  102. 102.
    G.-S. Tian, Lieb's spin-reflection-positivity method and its applications to strongly correlated electron systems, J. Statist. Phys. 116 (2004)no. 1–4, 629–680.MathSciNetzbMATHGoogle Scholar
  103. 103.
  104. 104.
    Y. Velenik, Localization and delocalization of random interfaces, Probab. Surveys. 3 (2006) 112–169.MathSciNetzbMATHGoogle Scholar
  105. 105.
    P. Weiss, L'hypothèse du champ moléculaire et la propriété ferromagnétique, J. de Physique. 6 (1907) 661–689.zbMATHGoogle Scholar
  106. 106.
    F.Y. Wu, The Potts model, Rev. Modern Phys. 54 (1982) 235–268.MathSciNetGoogle Scholar
  107. 107.
    M. Zahradník, Contour methods and Pirogov-Sinai theory for continuous spin lattice models, In: R.A. Minlos, S. Shlosman and Yu.M. Suhov (eds.), On Dobrushin's way. From probability theory to statistical physics, pp. 197–220, Amer. Math. Soc. Transl. Ser. 2, vol. 198, Amer. Math. Soc., Providence, RI, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of MathematicsUCLALos AngelesUSA

Personalised recommendations