Multiple Instance Boost Using Graph Embedding Based Decision Stump for Pedestrian Detection
Abstract
Pedestrian detection in still image should handle the large appearance and stance variations arising from the articulated structure, various clothing of human as well as viewpoints. In this paper, we address this problem from a view which utilizes multiple instances to represent the variations in multiple instance learning (MIL) framework. Specifically, logistic multiple instance boost (LMIBoost) is advocated to learn the pedestrian appearance model. To efficiently use the histogram feature, we propose the graph embedding based decision stump for the data with non-Gaussian distribution. First the topology structure of the examples are carefully designed to keep between-class far and within-class close. Second, K-means algorithm is adopted to fast locate the multiple decision planes for the weak classifier. Experiments show the improved accuracy of the proposed approach in comparison with existing pedestrian detection methods, on two public test sets: INRIA and VOC2006’s person detection subtask [1].
Keywords
Support Vector Machine Multiple Instance Linear Support Vector Machine Histogram Feature Pedestrian DetectionReferences
- 1.Everingham, M., Zisserman, A., Williams, C.K.I., Gool, L.V.: The PASCAL Visual Object Classes Challenge (VOC 2006) Results (2006), http://www.pascal-network.org/challenges/VOC/voc2006/results.pdf
- 2.Gavrila, D.M.: Pedestrian detection from a moving vehicle. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 37–49. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 3.Bissacco, A., Yang, M., Soatto, S.: Detection human via their pose. In: Proc. NIPS (2006)Google Scholar
- 4.Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. CVPR, vol. I, pp. 886–893. IEEE, Los Alamitos (2005)Google Scholar
- 5.Papageorgiou, P., Poggio, T.: A trainable system for object detection. IJCV, 15–33 (2000)Google Scholar
- 6.Viola, P., Jones, M., Snow, D.: Detecing pedestrians using patterns of motion and appearance. In: Proc. ICCV (2003)Google Scholar
- 7.Maron, O., Lozanno-Perez, T.: A framework for multiple-instance learning. In: Proc. NIPS, pp. 570–576 (1998)Google Scholar
- 8.Dietterich, T., Lathrop, R., Lozano-Perez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artifical intelligence, 31–71 (1997)Google Scholar
- 9.Xu, X., Frank, E.: Logistic regression and boosting for labeled bags of instances. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 272–281. Springer, Heidelberg (2004)Google Scholar
- 10.Sugiyama, M.: local fisher discriminat analysis for supervised dimensionality reduction. In: Proc. ICML (2006)Google Scholar
- 11.Monhan, A., Papageorgiou, C., Poggio, T.: Example-based object detection in images by componets. IEEE Trans. PAMI 23, 349–360 (2001)Google Scholar
- 12.Lowe, D.G.: Distinctive image features from scale-invariant keypoints, 91–110 (2004)Google Scholar
- 13.Zhu, Q., Avidan, S., Yeh, M.C., Cheng, K.T.: Fast human detection using a cascade of histograms of oriented gradients. In: Proc. CVPR, vol. 2, pp. 1491–1498. IEEE, Los Alamitos (2006)Google Scholar
- 14.Tuzel, O., Porikli, F., Meer, P.: Human detection via classification on riemannina manifolds. In: Proc. CVPR. IEEE, Los Alamitos (2007)Google Scholar
- 15.Zisserman, A., Schmid, C., Mikolajczyk, K.: Human detection based on a probabilistic assembly of robust part detectors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 69–82. Springer, Heidelberg (2004)Google Scholar
- 16.Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowed scenes. In: Proc. CVPR, pp. 878–885. IEEE, Los Alamitos (2005)Google Scholar
- 17.Tran, D., Forsyth, D.A.: Configuration estimates improve pedestrian finding. In: Proc. NIPS (2007)Google Scholar
- 18.Felzenszwalb, P., Mcallester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: Proc. CVPR. IEEE, Los Alamitos (2008)Google Scholar
- 19.Maron, O., Ratan, A.: Multiple-instance learning for natural scene classification. In: Proc. ICML (1998)Google Scholar
- 20.Viola, P., Platt, J.C., Zhang, C.: Multiple instance boosting for object detection. In: Proc. NIPS (2006)Google Scholar
- 21.Porikli, F.M.: Integral histogram: a fast way to extract histogram in cartesian space. In: Proc. CVPR, pp. 829–836. IEEE, Los Alamitos (2005)Google Scholar
- 22.Liu, C., Shum, H.Y.: Kullback-leibler boosting. In: Proc. CVPR, pp. 587–594 (2003)Google Scholar
- 23.Laptev, I.: Improvements of object detection using boosted histograms. In: BMVC (2006)Google Scholar
- 24.Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. CVPR. IEEE, Los Alamitos (2001)Google Scholar
- 25.Huang, C., Ai, H., Wu, B., Lao, S.: Boosting nested cascade detector for multi-view face detection. In: Proc. ICPR. IEEE, Los Alamitos (2004)Google Scholar
- 26.Xiao, R., Zhu, H., Sun, H., Tang, X.: Dynamic cascades for face detection. In: Proc. ICCV. IEEE, Los Alamitos (2007)Google Scholar