Advertisement

Differential Spatial Resection - Pose Estimation Using a Single Local Image Feature

  • Kevin Köser
  • Reinhard Koch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5305)

Abstract

Robust local image features have been used successfully in robot localization and camera pose estimation; region tracking using affine warps is considered state of the art also for many years. Although such correspondences provide a warp of the local image region and are quite powerful, in direct pose estimation they are so far only considered as points and therefore three of them are required to construct a camera pose. In this contribution we show how it is possible to directly compute a pose based upon one such feature, given the plane in space where it lies. This differential correspondence concept exploits the texture warp and has recently gained attention in estimation of conjugate rotations. The approach can also be considered as the limiting case of the well-known spatial resection problem when the three 3D points approach each other infinitesimally close. We show that the differential correspondence is more powerful than conic correspondences while its exploitation requires nothing more complicated than the roots of a third order polynomial. We give a detailed sensitivity analysis, a comparison against state-of-the-art pose estimators and demonstrate real-world applicability of the algorithm based on automatic region recognition.

Keywords

Point Correspondence Epipolar Geometry Camera Center Feature Correspondence Omnidirectional Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. International Journal of Computer Vision 74(1), 59–73 (2007)CrossRefGoogle Scholar
  2. 2.
    Chum, O., Matas, J., Obdrzalek, S.: Epipolar geometry from three correspondences. In: Computer Vision Winter Workshop, Prague, pp. 83–88 (2003)Google Scholar
  3. 3.
    Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 1052–1067 (2007)CrossRefGoogle Scholar
  4. 4.
    DeMenthon, D., Davis, L.S.: Model-based object pose in 25 lines of code. International Journal of Computer Vision 15, 123–141 (1995)CrossRefGoogle Scholar
  5. 5.
    Finsterwalder, S., Scheufele, W.: Das Rückwärtseinschneiden im Raum. In: Bayerische, K., der Wissenschaften, A. (eds.) Sitzungsberichte der mathematisch-physikalischen Klasse, vol. 23/4, pp. 591–614 (1903)Google Scholar
  6. 6.
    Fischler, M., Bolles, R.: RANdom SAmpling Consensus: a paradigm for model fitting with application to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Grunert, J.A.: Das Pothenot’sche Problem, in erweiterter Gestalt; nebst Bemerkungen über seine Anwendung in der Geodäsie. In: Archiv der Mathematik und Physik, vol. 1, pp. 238–248, Greifswald. Verlag C.A. Koch (1841)Google Scholar
  8. 8.
    Haralick, B., Lee, C., Ottenberg, K., Nölle, M.: Review and analysis of solutions of the three point perspective pose estimation problem. International Journal of Computer Vision 13(3), 331–356 (1994)CrossRefGoogle Scholar
  9. 9.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  10. 10.
    Irani, M., Rousso, B., Peleg, S.: Recovery of ego-motion using region alignment. Transact. on Pattern Analysis and Machine Intelligence 19(3), 268–272 (1997)CrossRefGoogle Scholar
  11. 11.
    Jin, H., Favaro, P., Soatto, S.: A semi-direct approach to structure from motion. The Visual Computer 19(6), 377–394 (2003)CrossRefGoogle Scholar
  12. 12.
    Kahl, F., Heyden, A.: Using conic correspondence in two images to estimate the epipolar geometry. In: Proceedings of ICCV, pp. 761–766 (1998)Google Scholar
  13. 13.
    Kähler, O., Denzler, J.: Rigid motion constraints for tracking planar objects. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 102–111. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Kannala, J., Salo, M., Heikkila, J.: Algorithms for computing a planar homography from conics in correspondence. In: Proceedings of BMVC 2006 (2006)Google Scholar
  15. 15.
    Koeser, K., Beder, C., Koch, R.: Conjugate rotation: Parameterization and estimation from an affine feature corespondence. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008)Google Scholar
  16. 16.
    Koeser, K., Koch, R.: Exploiting uncertainty propagation in gradient-based image registration. In: Proc. of BMVC 2008 (to appear, 2008)Google Scholar
  17. 17.
    Kyle, S.: Using parallel projection mathematics to orient an object relative to a single image. The Photogrammetric Record 19, 38–50 (2004)CrossRefGoogle Scholar
  18. 18.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  19. 19.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI 1981, pp. 674–679 (1981)Google Scholar
  20. 20.
    De Ma, S.: Conics-based stereo, motion estimation, and pose determination. International Journal of Computer Vision 10(1), 7–25 (1993)CrossRefGoogle Scholar
  21. 21.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of BMVC 2002 (2002)Google Scholar
  22. 22.
    McGlone, J.C. (ed.): Manual of Photogrammetry, 5th edn. ASPRS (2004)Google Scholar
  23. 23.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. Transact. on Pattern Analysis and Machine Intell. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  24. 24.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., van Gool, L.: A comparison of affine region detectors. International Journal of Computer Vision 65(1-2), 43–72 (2005)CrossRefGoogle Scholar
  25. 25.
    Oberkampf, D., DeMenthon, D., Davis, L.S.: Iterative pose estimation using coplanar feature points. CVGIP 63(3) (1996)Google Scholar
  26. 26.
    Riggi, F., Toews, M., Arbel, T.: Fundamental matrix estimation via TIP - transfer of invariant parameters. In: Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, August 2006, pp. 21–24 (2006)Google Scholar
  27. 27.
    Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: Segmenting, modeling, and matching video clips containing multiple moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(3), 477–491 (2007)CrossRefGoogle Scholar
  28. 28.
    Schmid, C., Zisserman, A.: The geometry and matching of lines and curves over multiple views. International Journal of Computer Vision 40(3), 199–234 (2000)zbMATHCrossRefGoogle Scholar
  29. 29.
    Se, S., Lowe, D.G., Little, J.: Vision-based global localization and mapping for mobile robots. IEEE Transactions on Robotics 21(3), 364–375 (2005)CrossRefGoogle Scholar
  30. 30.
    Skrypnyk, I., Lowe, D.G.: Scene modelling, recognition and tracking with invariant image features. In: IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 110–119 (2004)Google Scholar
  31. 31.
    Thompson, E.H.: Space resection: Failure cases. The Photogrammetric Record 5(27), 201–207 (1966)Google Scholar
  32. 32.
    Williams, B., Klein, G., Reid, I.: Real-time slam relocalisation. In: Proceedings of ICCV, Rio de Janeiro, Brazil, pp. 1–8 (2007)Google Scholar
  33. 33.
    Zelnik-Manor, L., Irani, M.: Multiview constraints on homographies. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(2), 214–223 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Kevin Köser
    • 1
  • Reinhard Koch
    • 1
  1. 1.Institute of Computer ScienceChristian-Albrechts-University of KielKielGermany

Personalised recommendations