Advertisement

A Convex Formulation of Continuous Multi-label Problems

  • Thomas Pock
  • Thomas Schoenemann
  • Gottfried Graber
  • Horst Bischof
  • Daniel Cremers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5304)

Abstract

We propose a spatially continuous formulation of Ishikawa’s discrete multi-label problem. We show that the resulting non-convex variational problem can be reformulated as a convex variational problem via embedding in a higher dimensional space. This variational problem can be interpreted as a minimal surface problem in an anisotropic Riemannian space. In several stereo experiments we show that the proposed continuous formulation is superior to its discrete counterpart in terms of computing time, memory efficiency and metrication errors.

Keywords

Variational Problem Continuous Formulation Discrete Approach Metrication Error Proximal Point Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Greig, D., Porteous, B., Seheult, A.: Exact maximum a posteriori estimation for binary images. J. Royal Statistics Soc. 51(Series B), 271–279 (1989)Google Scholar
  2. 2.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  4. 4.
    Veksler, O.: Efficient Graph-based Energy Minimization Methods in Computer Vision. PhD thesis, Cornell University (July 1999)Google Scholar
  5. 5.
    Schlesinger, D., Flach, B.: Transforming an arbitrary minsum problem into a binary one. Technical Report TUD-FI06-01, Dresden University of Technology (2006)Google Scholar
  6. 6.
    Werner, T.: A linear programming approach to max-sum problem: A review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1165–1179 (2007)CrossRefGoogle Scholar
  7. 7.
    Ishikawa, H.: Exact optimization for markov random fields with convex priors. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1333–1336 (2003)CrossRefGoogle Scholar
  8. 8.
    Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962)zbMATHGoogle Scholar
  9. 9.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal of Applied Mathematics 66(5), 1632–1648 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fleming, W., Rishel, R.: An integral formula for total gradient variation. Arch. Math. 11, 218–222 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Vogel, C., Oman, M.: Iteration methods for total variation denoising. SIAM J. Sci. Comp. 17, 227–238 (1996)CrossRefzbMATHGoogle Scholar
  13. 13.
    Chan, T., Golub, G., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comp. 20(6), 1964–1977 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Carter, J.: Dual Methods for Total Variation-based Image Restoration. PhD thesis, UCLA, Los Angeles, CA (2001)Google Scholar
  15. 15.
    Chambolle, A.: An algorithm for total variation minimizations and applications. J. Math. Imaging Vis. (2004)Google Scholar
  16. 16.
    Chambolle, A.: Total variation minimization and a class of binary MRF models. Energy Minimization Methods in Computer Vision and Pattern Recognition, 136–152 (2005)Google Scholar
  17. 17.
    Rockafellar, R.: Augmented lagrangians and applications of the proximal point algorithm in convex programming. Math. of Oper Res 1, 97–116 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Appleton, B., Talbot, H.: Globally minimal surfaces by continuous maximal flows. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 106–118 (2006)CrossRefGoogle Scholar
  20. 20.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comp. Vis. 47(1-3), 7–42 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas Pock
    • 1
    • 2
  • Thomas Schoenemann
    • 1
  • Gottfried Graber
    • 2
  • Horst Bischof
    • 2
  • Daniel Cremers
    • 1
  1. 1.Department of Computer ScienceUniversity of BonnGermany
  2. 2.Institute for Computer Graphics and VisionGraz University of TechnologyAustria

Personalised recommendations