Advertisement

Region-Based 2D Deformable Generalized Cylinder for Narrow Structures Segmentation

  • Julien Mille
  • Romuald Boné
  • Laurent D. Cohen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5303)

Abstract

In this paper, we present a region-based deformable cylinder model, extending the work on classical region-based active contours and gradient-based ribbon snakes. Defined by a central curve playing the role of the medial axis and a variable thickness, the model is endowed with a region-dependent term.This energy follows the narrow band principle, in order to handle local region properties while overcoming limitations of classical edge-based models. The energy is subsequently transformed and derived in order to allow implementation on a polygonal line deformed with gradient descent. The model is used to extract path-like objects in medical and aerial images.

References

  1. 1.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefzbMATHGoogle Scholar
  2. 2.
    Jacob, M., Blu, T., Unser, M.: Efficient energies and algorithms for parametric snakes. IEEE Transactions on Image Processing 13(9), 1231–1244 (2004)CrossRefGoogle Scholar
  3. 3.
    Ronfard, R.: Region based strategies for active contour models. International Journal of Computer Vision 13(2), 229–251 (1994)CrossRefGoogle Scholar
  4. 4.
    Ivins, J., Porrill, J.: Active region models for segmenting textures and colours. Image and Vision Computing 13(5), 431–438 (1995)CrossRefGoogle Scholar
  5. 5.
    Cohen, L., Bardinet, E., Ayache, N.: Surface reconstruction using active contour models. In: SPIE Conference on Geometric Methods in Computer Vision, San Diego, CA, USA (1993)Google Scholar
  6. 6.
    Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Jehan-Besson, S., Barlaud, M., Aubert, G.: DREAM2S: Deformable regions driven by an eulerian accurate minimization method for image and video segmentation. International Journal of Computer Vision 53(1), 45–70 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision 46(3), 223–247 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Davatzikos, C., Prince, J.: An active contour model for mapping the cortex. IEEE Transactions on Medical Imaging 14(1), 65–80 (1995)CrossRefGoogle Scholar
  10. 10.
    Mayer, H., Laptev, I., Baumgartner, A.: Multi-scale and snakes for automatic road extraction. In: European Conference on Computer Vision (ECCV), Freiburg, Germany, pp. 720–733 (1998)Google Scholar
  11. 11.
    Laptev, I., Mayer, H., Lindeberg, T., Eckstein, W., Steger, C., Baumgartner, A.: Automatic extraction of roads from aerial images based on scale space and snakes. Machine Vision and Applications 12(1), 23–31 (2000)CrossRefGoogle Scholar
  12. 12.
    Pérez, P., Blake, A., Gangnet, M.: Jetstream: probabilistic contour extraction with particles. In: IEEE International Conference on Computer Vision (ICCV), Vancouver, Canada (2001)Google Scholar
  13. 13.
    Fua, P., Leclerc, Y.: Model driven edge detection. Machine Vision and Applications 3, 45–56 (1990)CrossRefGoogle Scholar
  14. 14.
    Li, H., Yezzi, A.: Vessels as 4-D curves: global minimal 4-D paths to extract 3-D tubular surfaces and centerlines. IEEE Transactions on Medical Imaging 26(9), 1213–1223 (2007)CrossRefGoogle Scholar
  15. 15.
    Mille, J., Boné, R., Makris, P., Cardot, H.: 2D and 3D deformable models with narrow band region energy. In: IEEE International Conference on Image Processing (ICIP), San Antonio, USA, pp. 57–60 (2007)Google Scholar
  16. 16.
    Cohen, L., Kimmel, R.: Global minimum for active contour models: a minimal path approach. International Journal of Computer Vision 24(1), 57–78 (1997)CrossRefGoogle Scholar
  17. 17.
    Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42(5), 577–685 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhu, S., Yuille, A.: Region competition: unifying snakes, region growing, Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(9), 884–900 (1996)CrossRefGoogle Scholar
  19. 19.
    Chakraborty, A., Staib, L., Duncan, J.: Deformable boundary finding in medical images by integrating gradient and region information. IEEE Transactions on Medical Imaging 15(6), 859–870 (1996)CrossRefGoogle Scholar
  20. 20.
    Aubert, G., Barlaud, M., Faugeras, O., Jehan-Besson, S.: Image segmentation using active contours: calculus of variations or shape gradients? SIAM Journal on Applied Mathematics 63(6), 2128–2154 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Debreuve, E., Gastaud, M., Barlaud, M., Aubert, G.: Using the shape gradient for active contour segmentation: from the continuous to the discrete formulation. Journal of Mathematical Imaging and Vision 28(1), 47–66 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Malladi, R., Sethian, J., Vemuri, B.: Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(2), 158–175 (1995)CrossRefGoogle Scholar
  23. 23.
    Farouki, R., Neff, C.: Analytic properties of plane offset curves. Computer Aided Geometric Design 7(1-4), 83–99 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)CrossRefzbMATHGoogle Scholar
  25. 25.
    Adalsteinsson, D., Sethian, J.: A fast level set method for propagating interfaces. Journal of Computational Physics 118(2), 269–277 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sethian, J.: A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Science 93(4), 1591–1595 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Cohen, L., Cohen, I.: Finite element methods for active contour models and balloons for 2D et 3D images. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1131–1147 (1993)CrossRefGoogle Scholar
  28. 28.
    Terzopoulos, D., Witkin, A., Kass, M.: Symmetry-seeking models and 3d object reconstruction. International Journal of Computer Vision 1(3), 211–221 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Julien Mille
    • 1
  • Romuald Boné
    • 1
  • Laurent D. Cohen
    • 2
  1. 1.Laboratoire d’InformatiqueUniversité François Rabelais de ToursToursFrance
  2. 2.CEREMADE, CNRS UMR 7534, Université Paris Dauphine Place du Maréchal de Lattre de TassignyParisFrance

Personalised recommendations