Advertisement

Active Contour Based Segmentation of 3D Surfaces

  • Matthias Krueger
  • Patrice Delmas
  • Georgy Gimel’farb
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5303)

Abstract

Algorithms incorporating 3D information have proven to be superior to purely 2D approaches in many areas of computer vision including face biometrics and recognition. Still, the range of methods for feature extraction from 3D surfaces is limited. Very popular in 2D image analysis, active contours have been generalized to curved surfaces only recently. Current implementations require a global surface parametrisation. We show that a balloon force cannot be included properly in existing methods, making them unsuitable for applications with noisy data. To overcome this drawback we propose a new algorithm for evolving geodesic active contours on implicit surfaces. We also introduce a new narrowband scheme which results in linear computational complexity. The performance of our model is illustrated on various real and synthetic 3D surfaces.

Keywords

Active Contour Active Contour Model Geodesic Curvature Implicit Surface Signed Distance Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bertalmio, M., Memoli, F., Cheng, L.T., Sapiro, G., Osher, S.: Variational problems and partial differential equations on implicit surfaces: Bye bye triangulated surfaces? In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 381–398. Springer, New York (2003)CrossRefGoogle Scholar
  2. 2.
    Bogdanova, I., Bresson, X., Thiran, J., Vandergheynst, P.: Scale-space analysis and active contours for omnidirectional images. IEEE Trans. Image Processing 16, 1888–1901 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kimmel, R.: Intrinsic scale space for images on surfaces: The geodesic curvature flow. Graphical Models And Image Processing 59, 365–372 (1997)CrossRefGoogle Scholar
  4. 4.
    Wu, C., Deng, J., Zhu, W., Chen, F.: Inpainting images on implicit surfaces. In: Proc. Pacific Graphics Conf. 2005, University of Macau, pp. 142–144 (2005)Google Scholar
  5. 5.
    do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)zbMATHGoogle Scholar
  6. 6.
    Chang, K.I., Bowyer, K.W., Flynn, P.J.: An evaluation of multimodal 2D+3D face biometrics. IEEE Trans. Pattern Anal. Machine Intell. 27, 619–624 (2005)CrossRefGoogle Scholar
  7. 7.
    Tsalakanidou, F., Malassiotis, S., Strintzis, M.G.: Integration of 2D and 3D images for enhanced face authentication. In: Proc. IEEE 6th Int. Conf. Automatic Face and Gesture Recognition (FG 2004), Seoul, Korea, pp. 266–271 (2004)Google Scholar
  8. 8.
    Yan, P., Bowyer, K.W.: Biometric recognition using 3D ear shape. IEEE Trans. Pattern Anal. Machine Intell. 29, 1297–1308 (2007)CrossRefGoogle Scholar
  9. 9.
    Spira, A., Kimmel, R.: Geometric curve flows on parametric manifolds. J. Comp. Physics 223, 235–249 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Krueger, M., Delmas, P., Gimel’farb, G.: Towards feature extraction on implicit surfaces using geodesic active contours. In: Proc. Image and Vision Computing New Zealand, Hamilton, New Zealand, pp. 294–299 (2007)Google Scholar
  11. 11.
    Cheng, L.T., Burchard, P., Merriman, B., Osher, S.: Motion of curves constrained on surfaces using a level-set approach. J. Comp. Physics 175, 604–644 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Computer Vision 1, 321–331 (1987)CrossRefGoogle Scholar
  13. 13.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Computer Vision 22, 61–79 (1997)CrossRefzbMATHGoogle Scholar
  14. 14.
    Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comp. Physics 79, 12–49 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jin, H., Yezzi, A., Soatto, S.: Mumford-Shah on the move: Region-based segmentation on deforming manifolds with application to 3D reconstruction of shape and appearance from multi-view images. J. Math. Imaging Vision 29, 219–234 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Osher, S., Fedkiw, R.: Level sets methods and dynamic implicit surfaces. Springer, New York (2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    Peng, D., Merriman, B., Zhao, H.K., Osher, S., Kang, M.: A PDE based fast local level set method. J. Comp. Physics 155, 410–438 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sethian, J.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sciences 93, 1591–1595 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Troje, N., Buelthoff, H.H.: Face recognition under varying poses: The role of texture and shape. Vision Research 36, 1761–1771 (1996)CrossRefGoogle Scholar
  20. 20.
    Princeton suggestive contours gallery, http://www.cs.princeton.edu/gfx/prog/sugcon/models/
  21. 21.
    Carr, J.C., Beatson, R.K., Cherrie, J.B., et al.: Reconstruction and representation of 3D objects with radial basis functions. In: Proc. SIGGRAPH 2001, Los Angeles, USA, pp. 67–76 (2001)Google Scholar
  22. 22.
    Mauch, S.: A fast algorithm for computing the closest point and distance transform. Technical Report, California Institute of Technology (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Matthias Krueger
    • 1
  • Patrice Delmas
    • 1
  • Georgy Gimel’farb
    • 1
  1. 1.Dept. of Computer ScienceThe University of AucklandAucklandNew Zealand

Personalised recommendations