Advertisement

Anisotropic Geodesics for Perceptual Grouping and Domain Meshing

  • Sébastien Bougleux
  • Gabriel Peyré
  • Laurent Cohen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5303)

Abstract

This paper shows how Voronoi diagrams and their dual Delaunay complexes, defined with geodesic distances over 2D Reimannian manifolds, can be used to solve two important problems encountered in computer vision and graphics. The first problem studied is perceptual grouping which is a curve reconstruction problem where one should complete in a meaningful way a sparse set of noisy curves. From this latter curves, our grouping algorithm first designs an anisotropic tensor field that corresponds to a Reimannian metric. Then, according to this metric, the Delaunay graph is constructed and pruned in order to correctly link together salient features. The second problem studied is planar domain meshing, where one should build a good quality triangulation of a given domain. Our meshing algorithm is a geodesic Delaunay refinement method that exploits an anisotropic tensor field in order to locally impose the orientation and aspect ratio of the created triangles.

Keywords

Voronoi Diagram Geodesic Distance Structure Tensor Voronoi Cell Riemannian Metrics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Leibon, G., Letscher, D.: Delaunay triangulations and Voronoi diagrams for Riemannian manifolds. In: Symp. on Computational Geometry, pp. 341–349. ACM, New York (2000)Google Scholar
  2. 2.
    Frey, P.J., George, P.-L.: Mesh generation. Application to finite elements, 2nd edn. Wiley, Chichester (2008)zbMATHGoogle Scholar
  3. 3.
    Labelle, F., Shewchuk, J.R.: Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation. In: Symp. on Computational Geometry, pp. 191–200 (2003)Google Scholar
  4. 4.
    Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27, 1–67 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cohen, L.D., Kimmel, R.: Global Minimum for Active Contour models: A Minimal Path Approach. International Journal of Computer Vision 24(1), 57–78 (1997)CrossRefGoogle Scholar
  6. 6.
    Sethian, J.A.: Level Sets Methods and Fast Marching Methods, 2nd edn. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  7. 7.
    Kimmel, R., Sethian, J.: Computing Geodesic Paths on Manifolds. Proc. Natl. Acad. Sci. 95(15), 8431–8435 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Spira, A., Kimmel, R.: An efficient solution to the eikonal equation on parametric manifolds. Interfaces and Free Boundaries 6(3), 315–327 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Weighted distance maps computation on parametric three-dimensional manifolds. Journal of Computational Physics (accepted, 2007)Google Scholar
  10. 10.
    Prados, E., Lenglet, C., Pons, J.P., Wotawa, N., Deriche, R., Faugeras, O.D., Soatto, S.: Control theory and fast marching methods for brain connectivity mapping. In: Proc. CVPR 2006 (2006)Google Scholar
  11. 11.
    Ren, X., Fowlkes, C.C., Malik, J.: Learning probabilistic models for contour completion in natural images. Int. Journal of Computer Vision 77, 47–63 (2008)CrossRefGoogle Scholar
  12. 12.
    Cohen, L.D.: Multiple contour finding and perceptual grouping using minimal paths. Journal of Mathematical Imaging and Vision 14(3), 225–236 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Guy, G., Medioni, G.: Inferring global perceptual contours from local features. International Journal of Computer Vision 20(1-2), 113–133 (1996)CrossRefGoogle Scholar
  14. 14.
    Mumford, D.: Elastica and computer vision. In: Algebraic geometry and its applications, pp. 491–506Google Scholar
  15. 15.
    Kothe, U.: Edge and junction detection with an improved structure tensor. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 25–32. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Williams, L., Jacobs, D.W.: Stochastic completion fields: a neural model of illusory contour shape and salience. Neural Comput. 9(4), 837–858 (1997)CrossRefGoogle Scholar
  17. 17.
    Medioni, G., Lee, M.S., Tang, C.K.: A Computational Framework for Segmentation and Grouping. Elsevier, Amsterdam (2000)zbMATHGoogle Scholar
  18. 18.
    Ruppert, J.: A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J. Algorithms 18(3), 548–585 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chew, L.P.: Guaranteed-quality mesh generation for curved surfaces. In: Proc. of SCG 1993, pp. 274–280. ACM, New York (1993)Google Scholar
  20. 20.
    Borouchaki, H., George, P., Mohammadi, B.: Delaunay mesh generation governed by metric specifications. Part I. algorithms. Finite Elem. Anal. Des. 25(1-2), 61–83 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Bossen, F.J., Heckbert, P.S.: A pliant method for anisotropic mesh generation. In: 5th Intl. Meshing Roundtable, October 1996, pp. 63–74 (1996)Google Scholar
  22. 22.
    Yamakawa, S., Shimada, K.: High quality anisotropic tetrahedral mesh generation via ellipsoidal bubble packing. In: IMR, pp. 263–274 (2000)Google Scholar
  23. 23.
    Yokosuka, Y., Imai, K.: Guaranteed-quality anisotropic mesh generation for domains with curves. In: Proc. of EWCG 2006 (2006)Google Scholar
  24. 24.
    Boissonnat, J.D., Wormser, C., Yvinec, M.: Anisotropic diagrams: Labelle shewchuk approach revisited. In: CCCG, pp. 266–269 (2005)Google Scholar
  25. 25.
    Feng, Z., Hotz, I., Hamann, B., Joy, K.I.: Anisotropic noise samples. IEEE Transactions on Visualization and Computer Graphics 14(2), 342–354 (2008)CrossRefGoogle Scholar
  26. 26.
    Du, Q., Wang, D.: Anisotropic centroidal Voronoi tessellations and their applications. SIAM Journal on Scientific Computing 26(3), 737–761 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Valette, S., Chassery, J., Prost, R.: Generic remeshing of 3d triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Trans. Visu. Comp. Graph. 14(2), 369–381 (2008)CrossRefGoogle Scholar
  28. 28.
    Peyré, G., Cohen, L.D.: Geodesic remeshing using front propagation. Int. J. Comput. Vision 69(1), 145–156 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sébastien Bougleux
    • 1
  • Gabriel Peyré
    • 1
  • Laurent Cohen
    • 1
  1. 1.Université Paris-Dauphine, CEREMADEParis Cedex 16France

Personalised recommendations