A Perceptual Comparison of Distance Measures for Color Constancy Algorithms

  • Arjan Gijsenij
  • Theo Gevers
  • Marcel P. Lucassen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5302)


Color constancy is the ability to measure image features independent of the color of the scene illuminant and is an important topic in color and computer vision. As many color constancy algorithms exist, different distance measures are used to compute their accuracy. In general, these distances measures are based on mathematical principles such as the angular error and Euclidean distance. However, it is unknown to what extent these distance measures correlate to human vision.

Therefore, in this paper, a taxonomy of different distance measures for color constancy algorithms is presented. The main goal is to analyze the correlation between the observed quality of the output images and the different distance measures for illuminant estimates. The output images are the resulting color corrected images using the illuminant estimates of the color constancy algorithms, and the quality of these images is determined by human observers. Distance measures are analyzed how they mimic differences in color naturalness of images as obtained by humans.

Based on the theoretical and experimental results on spectral and real-world data sets, it can be concluded that the perceptual Euclidean distance (PED) with weight-coefficients (w R  = 0.26, w G  = 0.70, w B  = 0.04) finds its roots in human vision and correlates significantly higher than all other distance measures including the angular error and Euclidean distance.


Distance Measure Color Space Human Observer Angular Error Hyperspectral Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    van de Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Transactions on Image Processing 16(9), 2207–2214 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Land, E.: The retinex theory of color vision. Scientific American 237(6), 108–128 (1977)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Buchsbaum, G.: A spatial processor model for object colour perception. J. Franklin Institute 310(1), 1–26 (1980)CrossRefGoogle Scholar
  4. 4.
    Finlayson, G., Trezzi, E.: Shades of gray and colour constancy. In: Proc. CIC, pp. 37–41 (2004)Google Scholar
  5. 5.
    Ciurea, F., Funt, B.: A large image database for color constancy research. In: Proc. CIC, pp. 160–164 (2003)Google Scholar
  6. 6.
    Barnard, K., Martin, L., Funt, B., Coath, A.: A data set for color research. Color Research and Application 27(3), 147–151 (2002)CrossRefGoogle Scholar
  7. 7.
    Hordley, S., Finlayson, G.: Reevaluation of color constancy algorithm performance. J. Opt. Soc. America A 23(5), 1008–1020 (2006)CrossRefGoogle Scholar
  8. 8.
    von Kries, J.: Influence of adaptation on the effects produced by luminous stimuli. In: MacAdam, D. (ed.) Sources of Color Vision, pp. 109–119. MIT Press, Cambridge (1970)Google Scholar
  9. 9.
    Wyszecki, G., Stiles, W.: Color science: concepts and methods, quantitative data and formulae. John Wiley & sons, Chichester (2000)Google Scholar
  10. 10.
    Slater, J.: Modern television systems to HDTV and beyond. Taylor & Francis Group, Abington (2004)Google Scholar
  11. 11.
    Arend, L., Reeves, A., Schirillo, J., Goldstein, R.: Simultaneous color constancy: papers with diverse munsell values. J. Opt. Soc. America A 8(4), 661–672 (1991)CrossRefGoogle Scholar
  12. 12.
    Brunswik, E.: Zur entwicklung der albedowahrnehmung. Zeitschrift fur Psychologie 109, 40–115 (1928)Google Scholar
  13. 13.
    Delahunt, P., Brainard, D.: Does human color constancy incorporate the statistical regularity of natural daylight? Journal of Vision 4(2), 57–81 (2004)CrossRefGoogle Scholar
  14. 14.
    Foster, D., Nascimento, S., Amano, K.: Information limits on neural identification of colored surfaces in natural scenes. Visual Neuroscience 21, 331–336 (2004)CrossRefGoogle Scholar
  15. 15.
    Stokes, M., Anderson, M., Chandrasekar, S., Motta, R.: A standard default color space for the internet-srgb (1996),
  16. 16.
    Bailey, J., Neitz, M., Tait, D., Neitz, J.: Evaluation of an updated hrr color vision test. Visual Neuroscience 22, 431–436 (2004)CrossRefGoogle Scholar
  17. 17.
    David, H.: Ranking from unbalanced paired-comparison data. Biometrika 74, 432–436 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Alfvin, R., Fairchild, M.: Observer variability in metameric color matches using color reproduction media. Color Research and Application 22, 174–188 (1997)CrossRefGoogle Scholar
  19. 19.
    Kirchner, E., van den Kieboom, G., Njo, L., Supr, R., Gottenbos, R.: Observation of visual texture of metallic and pearlescent materials. Color Research and Application 32, 256–266 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Arjan Gijsenij
    • 1
  • Theo Gevers
    • 1
  • Marcel P. Lucassen
    • 1
  1. 1.Intelligent Systems Laboratory AmsterdamUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations