Component-Based Modelling of RNA Structure Folding

  • Carsten Maus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5307)


RNA structure is fundamentally important for many biological processes. In the past decades, diverse structure prediction algorithms and tools were developed but due to missing descriptions in clearly defined modelling formalisms it’s difficult or even impossible to integrate them into larger system models. We present an RNA secondary structure folding model described in ml-Devs, a variant of the Devs formalism, which enables the hierarchical combination with other model components like RNA binding proteins. An example of transcriptional attenuation will be given where model components of RNA polymerase, the folding RNA molecule, and the translating ribosome play together in a composed dynamic model.


RNA folding secondary structure DEVS model components multi-level 


  1. 1.
    Kaberdin, V.R., Blasi, U.: Translation initiation and the fate of bacterial mRNAs. FEMS Microbiol. Rev. 30(6), 967–979 (2006)CrossRefPubMedGoogle Scholar
  2. 2.
    Gusarov, I., Nudler, E.: The Mechanism of Intrinsic Transcription Termination. Mol. Cell 3(4), 495–504 (1999)CrossRefPubMedGoogle Scholar
  3. 3.
    Yanofsky, C.: Transcription attenuation: once viewed as a novel regulatory strategy. J. Bacteriol. 182(1), 1–8 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nahvi, A., Sudarsan, N., Ebert, M.S., Zou, X., Brown, K.L., Breaker, R.R.: Genetic Control by a Metabolite Binding mRNA. Chem. Biol. 9(9), 1043–1049 (2002)CrossRefPubMedGoogle Scholar
  5. 5.
    Torarinsson, E., Havgaard, J.H., Gorodkin, J.: Multiple structural alignment and clustering of RNA sequences. Bioinformatics 23(8), 926–932 (2007)CrossRefPubMedGoogle Scholar
  6. 6.
    Hofacker, I.L., Fekete, M., Stadler, P.F.: Secondary Structure Prediction for Aligned RNA Sequences. J. Mol. Biol. 319(5), 1059–1066 (2002)CrossRefPubMedGoogle Scholar
  7. 7.
    Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13), 3406–3415 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Monatsh. Chem./Chemical Monthly 125(2), 167–188 (1994)CrossRefGoogle Scholar
  9. 9.
    Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285(5), 2053–2068 (1999)CrossRefPubMedGoogle Scholar
  10. 10.
    Xayaphoummine, A., Bucher, T., Thalmann, F., Isambert, H.: Prediction and Statistics of Pseudoknots in RNA Structures Using Exactly Clustered Stochastic Simulations. Proc. Natl. Acad. Sci. U.S.A. 100(26), 15310–15315 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schmitz, M., Steger, G.: Description of RNA Folding by “Simulated Annealing”. J. Mol. Biol. 255(1), 254–266 (1996)CrossRefPubMedGoogle Scholar
  12. 12.
    Flamm, C., Fontana, W., Hofacker, I.L., Schuster, P.: RNA folding at elementary step resolution. RNA 6(3), 325–338 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Flamm, C., Hofacker, I.L.: Beyond energy minimization: approaches to the kinetic folding of RNA. Monatsh. Chem./Chemical Monthly 139(4), 447–457 (2008)CrossRefGoogle Scholar
  14. 14.
    Santillán, M., Mackey, M.C.: Dynamic regulation of the tryptophan operon: A modeling study and comparison with experimental data. Proc. Natl. Acad. Sci. U.S.A 98(4), 1364–1369 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Degenring, D., Lemcke, J., Röhl, M., Uhrmacher, A.M.: A Variable Structure Model – the Tryptophan Operon. In: Proc. of the 3rd International Workshop on Computational Methods in Systems Biology, Edinburgh, Scotland, April 3-5 (2005)Google Scholar
  16. 16.
    Serra, M.J., Lyttle, M.H., Axenson, T.J., Schadt, C.A., Turner, D.H.: RNA hairpin loop stability depends on closing base pair. Nucleic Acids Res. 21(16), 3845–3849 (1993)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Walter, A.E., Turner, D.H., Kim, J., Lyttle, M.H., Müller, P., Mathews, D.H., Zuker, M.: Coaxial Stacking of Helixes Enhances Binding of Oligoribonucleotides and Improves Predictions of RNA Folding. Proc. Natl. Acad. Sci. U.S.A. 91(20), 9218–9222 (1994)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Russell, R., Millett, I.S., Tate, M.W., Kwok, L.W., Nakatani, B., Gruner, S.M., Mochrie, S.G.J., Pande, V., Doniach, S., Herschlag, D., Pollack, L.: Rapid compaction during RNA folding. Proc. Natl. Acad. Sci. U.S.A. 99(7), 4266–4271 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Uhrmacher, A.M., Ewald, R., John, M., Maus, C., Jeschke, M., Biermann, S.: Combining Micro and Macro-Modeling in DEVS for Computational Biology. In: WSC 2007: Proceedings of the 39th conference on Winter simulation, pp. 871–880. IEEE Press, Los Alamitos (2007)CrossRefGoogle Scholar
  20. 20.
    Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation. Academic Press, London (2000)Google Scholar
  21. 21.
    Uhrmacher, A.M., Himmelspach, J., Jeschke, M., John, M., Leye, S., Maus, C., Röhl, M., Ewald, R.: One Modelling Formalism & Simulator Is Not Enough! A Perspective for Computational Biology Based on James II. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 123–138. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Bokinsky, G., Zhuang, X.: Single-molecule RNA folding. Acc. Chem. Res. 38(7), 566–573 (2005)CrossRefPubMedGoogle Scholar
  23. 23.
    Sclavi, B., Sullivan, M., Chance, M.R., Brenowitz, M., Woodson, S.A.: RNA Folding at Millisecond Intervals by Synchrotron Hydroxyl Radical Footprinting. Science 279(5358), 1940–1943 (1998)CrossRefPubMedGoogle Scholar
  24. 24.
    Zhuang, X., Bartley, L.E., Babcock, H.P., Russell, R., Ha, T., Herschlag, D., Chu, S.: A Single-Molecule Study of RNA Catalysis and Folding (2000)Google Scholar
  25. 25.
    You, S., Stump, D.D., Branch, A.D., Rice, C.M.: A cis-Acting Replication Element in the Sequence Encoding the NS5B RNA-Dependent RNA Polymerase Is Required for Hepatitis C Virus RNA Replication. J. Virol. 78(3), 1352–1366 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rich, A., RajBhandary, U.L.: Transfer RNA: Molecular Structure, Sequence, and Properties. Annu. Rev. Biochem. 45(1), 805–860 (1976)CrossRefPubMedGoogle Scholar
  27. 27.
    Clark, B.F.C.: The crystal structure of tRNA. J. Biosci. 31(4), 453–457 (2006)CrossRefPubMedGoogle Scholar
  28. 28.
    Jonassen, C.M., Jonassen, T.O., Grinde, B.: A common RNA motif in the 3’ end of the genomes of astroviruses, avian infectious bronchitis virus and an equine rhinovirus. J. Gen. Virol. 79(4), 715–718 (1998)CrossRefPubMedGoogle Scholar
  29. 29.
    Robertson, M.P., Igel, H., Baertsch, R., Haussler, D., Ares, M.J., Scott, W.G.: The structure of a rigorously conserved RNA element within the SARS virus genome. PLoS Biol. 3(1), 86–94 (2005)Google Scholar
  30. 30.
    Höbartner, C., Micura, R.: Bistable Secondary Structures of Small RNAs and Their Structural Probing by Comparative Imino Proton NMR Spectroscopy. J. Mol. Biol. 325(3), 421–431 (2003)CrossRefPubMedGoogle Scholar
  31. 31.
    Wenter, P., Fürtig, B., Hainard, A., Schwalbe, H., Pitsch, S.: Kinetics of Photoinduced RNA Refolding by Real-Time NMR Spectroscopy. Angew. Chem. Int. Ed. Engl. 44(17), 2600–2603 (2005)CrossRefPubMedGoogle Scholar
  32. 32.
    Takyar, S., Hickerson, R.P., Noller, H.F.: mRNA Helicase Activity of the Ribosome. Cell 120(1), 49–58 (2005)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carsten Maus
    • 1
  1. 1.Institute of Computer Science, Modelling and Simulation GroupUniversity of RostockRostockGermany

Personalised recommendations