Identification and Isolation of a Retrotransposon from the Freshwater Sponge Lubomirskia baicalensis: Implication in Rapid Evolution of Endemic Sponges

  • Matthias Wiens
  • Vladislav A. Grebenjuk
  • Heinz C. Schröder
  • Isabel M. Müller
  • Werner E. G. Müller
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 47)


Transposons are mobile genetic elements that are found in all major branches of life. Similarities to retroviruses concerning genome structure and transposition mechanism suggest a familial relationship. Transposons are important evolutionary drivers that trigger genetic changes such as genomic rearrangement, alteration of gene expression, and gene duplication. And, indeed, now more than ever the effect of transposons on genome evolution represents a dynamic field of research. Since sponges (phylum Porifera) are the phylogenetically oldest still extant metazoan taxon, the study of poriferan mobile elements contributes to the understanding of the generation of phenotypic diversity and speciation at the base of the metazoan tree of life. This work describes the analyses of the first poriferan mobile genetic element so far identified, the long terminal repeats- retrotransposon Baikalum-1 of Lubomirskia baicalensis (Demospongiae; Ceractinomorpha). Baikalum-1 embraces a continuous open reading frame, putatively coding for a polyprotein that consists of nucleo capsid, protease, reverse transcriptase, RNase H, and integrase, all proteins/ enzymes characteristic of retrotransposons. Baikalum-1 was discovered in all freshwater sponge species endemic to Lake Baikal, as well as in cosmopolitan sponge species that inhabit a Lake Baikal-feeding rivulet. However, the same cosmopolitan species sampled from lakes and rivers (Siberian and European) with no direct contact to Lake Baikal did not contain this particular mobile genetic element. Thus, Baikalum-1 is probably the result of an evolutionarily ancient retroviral infection that spread exclusively amongst Baikalian sponge species. In addition, the retro-transposon is found in the vicinity of the silicatein-A1 gene. Silicateins are cathepsin-like proteins that catalyze the synthesis of poriferan siliceous skeletal elements (spicules). In L. baicalensis, the silicatein-A1 gene is flanked by two palindroms, probably remnants of transposons that might be responsible for the emergence of four different silicatein genes, uniquely present in freshwater but not marine sponges. Adaptation of sponges to the freshwater habitat (with its significantly higher silica content compared to the marine milieu) required the ability to evolve rapidly, which could be conferred by high transpositional activity, accompanied by duplication and diversification of the ancestral silicatein gene of marine species.


Transposable Element Long Terminal Repeat Marine Sponge Mobile Genetic Element Schistosoma Mansoni 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams MD, Celniker SE, Holt RA et al. (2000) The genome sequence of Drosophila melano-gaster. Science 287:2185–2195CrossRefGoogle Scholar
  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Seidmann JG, Struhl K (1995) Current Protocols in Molecular Biology. Wiley, New YorkGoogle Scholar
  3. Brillet B., Bigot Y, Auge-Gouillou C (2007) Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains. Genetica 130:105–120CrossRefGoogle Scholar
  4. Brosius J (1999) Genomes were forged by massive bombardments with retroelements and retro-sequences. Genetica 107:209–238CrossRefGoogle Scholar
  5. Caenorhabditis elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018CrossRefGoogle Scholar
  6. Capy P, Bazin C, Higuet D, Langin T (1998) Dynamics and evolution of transposable elements. Landes Bioscience, Austin, TXGoogle Scholar
  7. Cha JN, Shimizu K, Zhou Y, Christianssen, SC, Chmelka, BF, Stucky, GD, Morse, DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365CrossRefGoogle Scholar
  8. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220CrossRefGoogle Scholar
  9. Coligan JE, Dunn BM, Ploegh HL, Speicher DW, Wingfield PT (2000) Current Protocols in Protein Science. Wiley, Chichester, pp. 2.0.1–2.8.17Google Scholar
  10. Craig NL, Craigie R, Gellert M, Lambowitz AM (2002) Mobile DNA II. American Society of Microbiology Press, Washington, DCCrossRefGoogle Scholar
  11. Curcio MJ, Derbyshire KM (2003) The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4:865–877CrossRefGoogle Scholar
  12. Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in protein. In: Dayhoff MO (ed) Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Washington, DC, pp. 345–352Google Scholar
  13. DeMarco R, Kowaltowski AT, Machado AA, Soares MB, Gargioni C, Kawano T, Rodrigues V, Madeira AM, Wilson RA, Menck CF, Setubal JC, as-Neto E, Leite LC, Verjovski-Almeida S (2004) Saci-1, -2, and -3 and Perere, four novel retrotransposons with high transcriptional activities from the human parasite Schistosoma mansoni. J Virol 78:2967–2978CrossRefPubMedPubMedCentralGoogle Scholar
  14. DeMarco R, Machado AA, Bisson-Filho AW, Verjovski-Almeida S (2005) Identification of 18 new transcribed retrotransposons in Schistosoma mansoni. Biochem Biophys Res Commun 333:230–240CrossRefGoogle Scholar
  15. Felsenstein, J, 1993 PHYLIP, ver. 3.5. University of Washington, SeattleGoogle Scholar
  16. Feschotte C, Pritham EJ (2007) DNA Transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368CrossRefPubMedPubMedCentralGoogle Scholar
  17. Flavell RB (1986) Repetitive DNA and chromosome evolution in plants. Philos Trans R Soc Lond B Biol Sci 312:227–242PubMedGoogle Scholar
  18. Ganko EW, Bhattacharjee V, Schliekelman P, McDonald JF (2003) Evidence for the contribution of LTR retrotransposons to C. elegans gene evolution. Mol Biol Evol 20:1925–1931CrossRefGoogle Scholar
  19. Goldman E (2003) Puzzling over the origin of species in the depths of the oldest lakes. Science 31:654–655CrossRefGoogle Scholar
  20. Granö, JG (1910) Beiträge zur Kenntnis der Eiszeit in der Nordwestlichen Mongolei. Helsingfors: J. Simelii.Google Scholar
  21. Greze VN, Greze II (1958) Ozero Chagytai. Izvestija Vsesoyuznogo Geographiceskogo Obscestva 90:279–284Google Scholar
  22. Hedges DJ, Batzer MA (2005) From the margins of the genome: mobile elements shape primate evolution. BioEssays 27:785–794CrossRefGoogle Scholar
  23. Hoen DR, Park KC, Elrouby N, Yu Z, Mohabir N, Cowan RK, Bureau TE (2006) Transposon-mediated expansion and diversification of a family of ULP-like genes. Mol Biol Evol 23:1254–1268CrossRefGoogle Scholar
  24. Hoskins RA, Smith CD, Carlson JW, et al. (2002) Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biol 3:RESEARCH0085–0085CrossRefPubMedPubMedCentralGoogle Scholar
  25. Izsvák Z, Ivics Z, Shimoda N, Mohn D, Okamoto H, Hackett PB (1999) Short inverted-repeat transposable elements in teleost fish and implications for a mechanism of their amplification. J Mol Evol 48:13–21CrossRefGoogle Scholar
  26. Kaminker JS, Bergman CM, Kronmiller B et al. (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol 3:RESEARCH0084–0084CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kashiwaya K, Tanaka A, Sakai H, Kawai T (2000) Paleoclimatic signals printed in Lake Baikal sediments. In: Minoura K (ed) Lake Baikal. Elsevier, Amsterdam, pp. 53–70Google Scholar
  28. Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63CrossRefGoogle Scholar
  29. Kidwell MG, Lisch DR (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Int J Org Evol 55:1–24CrossRefGoogle Scholar
  30. Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478CrossRefGoogle Scholar
  31. Krasko A, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myo-trophin. Eur J Biochem 267:4878–4887CrossRefGoogle Scholar
  32. Krasko A, Schröder HC, Batel R, Grebenjuk VA, Steffen R, Müller IM, Müller WEG (2002) Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol 21:67–80CrossRefGoogle Scholar
  33. Leimbach W (1936) Die Landeskunde von Tuwa – das Gebiet des Jenissei-Oberlaufes. Julius Perthes Verlag, GothaGoogle Scholar
  34. Leimbach W (1949) Neue Beiträge zur Geomorphologie von Tuwa. Petermanns geographische Mitteilungen [Gotha] 93:66–75Google Scholar
  35. Li WH, Gu Z, Wang H, Nekrutenko A (2001) Evolutionary analyses of the human genome. Nature 409:847–849CrossRefGoogle Scholar
  36. Makalowski W (2000) Genomic scrap yard: how genomes utilize all that junk. Gene 259: 61–67CrossRefGoogle Scholar
  37. Makalowski W (2003) Genomics. Not junk after all. Science 300:1246–1247CrossRefGoogle Scholar
  38. Malik HS, Eickbush TH (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73:5186–5190CrossRefPubMedPubMedCentralGoogle Scholar
  39. Marin I, Llorens C (2000) Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data. Mol Biol Evol 17:1040–1049CrossRefGoogle Scholar
  40. McDonald JF (1993) Evolution and consequences of transposable elements. Curr Opin Genet Dev 3:855–864CrossRefGoogle Scholar
  41. McDonald JF (1995) Transposable elements: possible catalysts of organismic evolution. Trends Ecol Evol 10:123–126CrossRefGoogle Scholar
  42. Müller WEG (2005) Spatial and temporal expression patterns in animals. In: Meyers, RA (ed) Encyclopedia of Molecular Cell Biology and Molecular Medicine, Vol 13. Wiley-VCH, Weinheim, pp. 269–309Google Scholar
  43. Müller W, Zahn RK (1968) Tethya limski n.sp, eine Tethyide aus der Adria (Porifera: Homosclerophorida: Tethyidae). Senckenbergiana Biol. 49:469–478Google Scholar
  44. Müller WEG, Brümmer F, Batel R, Müller IM, Schröder HC (2003) Molecular biodiversity. Case study: Porifera (sponges). Naturwissenschaften 90:103–120CrossRefGoogle Scholar
  45. Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM (2004) Bauplan of Urmetazoa: basis for genetic complexity of Metazoa. Int Rev Cytol 235:53–92CrossRefGoogle Scholar
  46. Müller WEG, Belikov SI, Kaluzhnaya OV, Perović-Ottstadt S, Fattorusso E, Ushijima H, Krasko A, Schröder HC (2006a) Cold stress defense in the freshwater sponge Lubomirskia baicalensis: role of okadaic acid produced by symbiotic dinoflagellates. FEBS J 274:23–36CrossRefGoogle Scholar
  47. Müller WEG, Schröder HC, Wrede P, Kaluzhnaya OV, Belikov SI (2006b) Speciation of sponges in Baikal-Tuva region (an outline). J Zool Syst Evol Res 44:105–117CrossRefGoogle Scholar
  48. Müller WEG, Boreiko A, Wang X, Belikov SI, Wiens M, Grebenjuk VA, Schloβmacher U, Schröder HC (2007) Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Gene 395:62–71CrossRefGoogle Scholar
  49. Nicholas KB, Nicholas HB Jr (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments. Version 1.1.004. Distributed by the author;; Internet
  50. Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607CrossRefGoogle Scholar
  51. Pearce SR, Harrison G, Li D, Heslop-Harrison J, Kumar A, Flavell AJ (1996) The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet 250:305–315PubMedGoogle Scholar
  52. Penney JT, Racek AA (1968) Comprehensive revision of a worldwide collection of freshwater sponges (Porifera: Spongillidae). Smithsonian Institution Press, WashingtonCrossRefGoogle Scholar
  53. Rezvoj P (1927) Notes on sponges from the Lake Dzhegataj-kul in the Urjankhaj region. Doklady Akademii Naukk SSSR 3/8:296–300Google Scholar
  54. Rubin E, Levy AA (1997) Abortive gap repair: underlying mechanism for Ds element formation. Mol Cell Biol 17:6294–6302CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sankov VA, Parfeevets AV, Miroshnitchenko AI, Lukhnev A, Arzhannikova AV (2003) Cenozoic dynamics of Baikal and Khubsugul basins. Berliner Paläontol Abh 4:49–54Google Scholar
  56. Schröder HC, Grebenjuk VA, Binder M, Skorokhod A, Batel R, Hassanein H, Müller WEG (2004) Functional molecular biodiversity assessment of the immune status of two sponge populations (Suberites domuncula) on the molecular level. Mar Ecol 25:93–108CrossRefGoogle Scholar
  57. Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238CrossRefGoogle Scholar
  58. Smit AF (1999) Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev 9:657–663CrossRefGoogle Scholar
  59. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  60. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  61. Waterston RH, Lindblad-Toh K, Birney E et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562CrossRefGoogle Scholar
  62. Wiens M, Belikov SI, Kaluzhnaya OV, Krasko A, Schröder HC, Perovic-Ottstadt S, Müller WEG (2006) Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and Mago Nashi. Dev Genes Evol 216:229–242CrossRefGoogle Scholar
  63. Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Matthias Wiens
    • 1
  • Vladislav A. Grebenjuk
    • 1
  • Heinz C. Schröder
    • 1
  • Isabel M. Müller
    • 1
  • Werner E. G. Müller
    • 1
  1. 1.Abteilung Angewandte Molekularbiologie UniversitätInstitut für Physiologische ChemieMainzGermany

Personalised recommendations