Advertisement

Paleoclimate and Evolution: Emergence of Sponges During the Neoproterozoic

  • Werner E. G. Müller
  • Xiaohong Wang
  • Heinz C. Schröder
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 47)

Abstract

In the last 15 years, we had to cope with many technological and conceptual obstacles. The major hindrance was the view that sponges are primitive and exist separated from the other metazoan organisms. After answering these problems, the painful scientific process to position the most enigmatic metazoan phylum, the Porifera, into the correct phylogenetic place among the eukaryotes in general and the multicellular animals in particular came to an end. The well-studied taxon Porifera (sponges) was first grouped to the animal-plants or plant-animals, then to the Zoophyta or Mesozoa, and finally to the Parazoa. Only by the application of molecular biological techniques was it possible to place the Porifera monophyletically with the other metazoan phyla, justifying a unification of all multicellular animals to only one kingdom, the Metazoa. The first strong support came from the discovery that cell–cell and cell–matrix adhesion molecules, that were cloned from sponges (mainly the demosponges Suberites domuncula and Geodia cydonium) and that were subsequently expressed, share high DNA sequence and protein function similarity with the corresponding molecules of other metazoans. Together with the molecular biological studies and with the use of the cell culture technologies (primmorphs), which allowed an insight into the stem cell system of these simple organisms, it was possible to stethoscope back in the paleontological history of animals. These studies confirmed the view that the sponges evolved between two epochal ice times, 710–680 Ma (Sturtian glaciation) and 605–585 Ma (Varanger-Marinoan ice age), a period which allowed evolution to proceed but resulted also in a mass extinction of most animal taxa, with the exception of the Porifera. These animals could develop in the aqueous milieu which was rich in silica, due also to their ability to live in a symbiosis with unicellular organisms (prokaryotic and also eukaryotic). Those organisms provided the sponges with the nutrition to survive and to overcome the food deprivation in cold water and even in an environment under the ice. Based on the diverse genetic toolkit, the sponges could also resist the adverse temperature and sunlight climatic influences. It is fortunate that the sponges survived the last 800 million years with their basic body plan. This fact might qualify the sponges to become model organisms not only in biology and molecular biology but also to be used – as living fossils – as reference organisms to deduce important and new insights in the understanding of fossil records explored from the Neoproterozoic. Taken together, these data caused a paradigmatic change; the Porifera are complex and simple, but by far not primitive, and they contribute to the understanding of the deep evolution of animals in molecular biological and paleontological views.

Keywords

Marine Sponge Siliceous Sponge Glia Maturation Factor Living Fossil Siliceous Spicule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adell T, Nefkens I, Müller WEG (2003) Polarity factor “Frizzled” in the demosponge Suberites domuncula: identification, expression and localization of the receptor in the epithelium/pina-coderm. FEBS Lett 554:363–368CrossRefGoogle Scholar
  2. Arillo A, Bavestrello G, Burlando B, Sara M (1993) Metabolic integration between symbiotic cyanobacteria and sponges: a possible mechanism. Marine Biol 117:159–162CrossRefGoogle Scholar
  3. Böger H (1988) Versuch über das phylogenetische System der Porifera. Meyniana 40:67–90Google Scholar
  4. Brasier M, Green O, Shields G (1997) Ediacarian sponge spicule clusters from southwest Mongolia and the origins of the Cambrian fauna. Geology 25:303–306CrossRefGoogle Scholar
  5. Breter HJ, Grebenjuk VA, Thakur NL, Müller IM, Müller WEG (2004) Oxygen-controlled bacterial growth in the sponge Suberites domuncula: towards a molecular approach to understand the symbiotic relationship sponge-bacteria. Appl Environ Microbiol 70:2332–2341CrossRefPubMedPubMedCentralGoogle Scholar
  6. Butterfield NJ (2007) Macroevolution and macroecology trough deep time. Palaeontology 50:41–55CrossRefGoogle Scholar
  7. Corsetti FA, Olcott AN, Bakermans C (2006) The biotic response to Neoproterozoic snowball earth. Palaeogeogr, Palaeoclimatol, Palaeoecol 232:114–130CrossRefGoogle Scholar
  8. Dewel RA (2000) Colonial origin of Eumetazoa: major morphological transitions and the origin of bilaterian complexity. J Morphol 243:35–74CrossRefGoogle Scholar
  9. Efremova SM, Margulis BA, Guzhova IV, Itskovich VB, Lauenroth S, Müller WEG, Schröder HC (2002) Heat shock protein Hsp70 expression and DNA damage in Bakalian sponges exposed to model pollutants and wastewater from Baikalsk Pulp and paper plant. Aquat Toxicol 57:267–280CrossRefGoogle Scholar
  10. Futuyma DJ (1986) Evolutionary biology. Sinauer, Sunderland, MAGoogle Scholar
  11. Galliot B, Miller D (2000) Origin of anterior patterning – how old is our head? Trends Genet 16:1–5CrossRefGoogle Scholar
  12. Gehling JG, Rigby JK (1996) Long expected sponges from the Neoproterozoic Ediacara Fauna of South Australia. J Paleontol 70:185–195CrossRefGoogle Scholar
  13. Grotzinger JP, Bowring SA, Saylor B, Kauffmann AJ (1995) New biostratigraphic and geochronologic constraints on early animal evolution. Science 270:598–604CrossRefGoogle Scholar
  14. Grunz H (2004) The vertebrate organizer. Springer-Verlag, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  15. Hirabayashi J, Kasai K (1993) The family of metazoan metal-independent ß-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology 3:297–304CrossRefGoogle Scholar
  16. Hoffmann PA, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change, Terra Nova 129–155Google Scholar
  17. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic snowball earth. Science 281:1342–1346CrossRefGoogle Scholar
  18. Knoll AH (1994) Proterozoic and Early Cambrian protists: evidence for accelerated evolutionary tempo. Proc Natl Acad Sci USA 91:6743–6750CrossRefGoogle Scholar
  19. Knoll AH, Carroll SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–2137CrossRefGoogle Scholar
  20. Koziol C, Leys SP, Müller IM, Müller WEG (1997) Cloning of Hsp70 genes from the marine sponges Sycon raphanus (Calcarea) and Rhabdocalyptus dawsoni (Hexactinellida). An approach to solve the phylogeny of sponges. Biol J Linn Soc 62:581–592Google Scholar
  21. Krasko A, Müller IM, Müller WEG (1997) Evolutionary relationships of the metazoan βγ-crystallins, including the one from the marine sponge Geodia cydonium. Proc Roy Soc Lond B 264:1077–1084CrossRefGoogle Scholar
  22. Krasko A, Schröder HC, Hassanein HMA, Batel R, Müller IM, Müller WEG (1998) Identification and expression of the SOS-response, aidB-like, gene in the marine sponge Geodia cydonium: implication for the phylogenetic relationships of metazoan Acyl-CoA dehydrogenases and Acyl-CoA oxidases. J Mol Evol 47:343–352CrossRefPubMedPubMedCentralGoogle Scholar
  23. Krasko A, Gundacker D, Leys SP, Schröder, HC, Müller IM, Müller WEG (2003) Molecular and functional analysis of the (6–4) photolyase from the hexactinellid Aphrocallistes vastus. Biochim Biophys Acta 1651:41–49CrossRefGoogle Scholar
  24. Kruse M, Müller IM, Müller WEG (1997) Early evolution of Metazoan serine/threonine- and tyrosine kinases: identification of selected kinases in marine sponges. Mol Biol Evol 14:1326–1334CrossRefGoogle Scholar
  25. Kruse M, Leys SP, Müller IM, Müller WEG (1998) Phylogenetic position of the Hexactinellida within the phylum Porifera based on amino acid sequence of the protein kinase C from Rhabdocalyptus dawsoni. J Mol Evol 46:721–728CrossRefGoogle Scholar
  26. Lasaga AC (1998) Kinetic theory in the earth sciences. Princeton University Press, Princeton, NJCrossRefGoogle Scholar
  27. Lendenfeld R V (1889) A monograph of the horny sponges. Royal Society, LondonGoogle Scholar
  28. Li CW, Chen JY, Hua TE (1998) Precambrian sponges with cellular structures. Science 279:879–882CrossRefGoogle Scholar
  29. Lindsay JF, Brasier MD (2004) The evolution of the Precambrian atmosphere: carbon isotopic evidence from the Australian continent. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The precambrian earth: tempo and events. Elsevier, Amsterdam, pp 388–421Google Scholar
  30. Mackie GO, Singla CL (1983) Studies on hexactinellid sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1873). Phil Trans Roy Soc Lond B 301:365–400CrossRefGoogle Scholar
  31. Maldonado M (2004) Choanoflagellates, choanocytes, and animal multicellularity. Invertebr Biol 123:1–22CrossRefGoogle Scholar
  32. Mayr E (2001) What evolution is. Basic Books, New YorkGoogle Scholar
  33. Medina M, Collins AG, Silberman JD, Sogin ML (2001) Evaluating hypothesis of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci USA 98:9707–9712CrossRefGoogle Scholar
  34. Mehl D, Reiswig HM (1991) The presence of flagellar vanes in choanomeres of Porifera and their possible phylogenetic implications. Z Zool Syst Evolut-Forsch 29, 312–319CrossRefGoogle Scholar
  35. Morris CS (1993) The fossil record and the early evolution of the Metazoa. Nature 361:219–225CrossRefGoogle Scholar
  36. Morris CS (1994) Why molecular biology needs palaeontology. Development, Suppl:1–13Google Scholar
  37. Mostler H (1985) Neue heteractinide Spongien (Calcispongea) aus dem Unter- und Mittelkambrium Südwestsardiniens. Ber Nat Med Ver Innsbruck 72:7–32Google Scholar
  38. Müller WEG (1995) Molecular phylogeny of Metazoa (animals): monophyletic origin. Naturwiss 82:321–329CrossRefGoogle Scholar
  39. Müller WEG (1998a) Origin of Metazoa: sponges as living fossils. Naturwiss 85:11–25CrossRefGoogle Scholar
  40. Müller WEG (ed) (1998b) Molecular evolution: Evidence for monophyly of Metazoa Progr Molec Subcell Biol 19. Springer-Verlag, Berlin/Heidelberg/New YorkGoogle Scholar
  41. Müller WEG (2001) How was metazoan threshold crossed: the hypothetical Urmetazoa. Comp Biochem Physiol [A] 129:433–460CrossRefGoogle Scholar
  42. Müller WEG (2005) Spatial and temporal expression patterns in animals. In: Meyers RA (ed) Encyclopedia of molecular cell biology and molecular medicine, vol 13. Wiley-VCH, Weinheim, pp 269–309Google Scholar
  43. Müller WEG (2006) The stem cell concept in sponges (Porifera): metazoan traits. Semin Cell Dev Biol 17:481–491CrossRefGoogle Scholar
  44. Müller WEG, Müller IM (2003) Origin of the metazoan immune system: identification of the molecules and their functions in sponges. Integr Comp Biol 43:281–292CrossRefGoogle Scholar
  45. Müller WEG, Zahn RK, Maidhof A (1982) Spongilla gutenbergiana n.sp., ein Süßwasserschwamm aus dem Mittel-Eozän von Messel. Senckenbergiana lethaea 63:465–472Google Scholar
  46. Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM (2004) The Bauplan of the Urmetazoa: The basis of the genetic complexity of Metazoa using the siliceous sponges [Porifera] as living fossils. Int Rev Cytol 235:53–92CrossRefGoogle Scholar
  47. Müller WEG, Belikov SI, Tremel W, Perry CC, Gieskes WWC, Boreiko A, Schröder HC (2006) Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37:107–120CrossRefGoogle Scholar
  48. Müller WEG, Li J, Schröder HC, Qiao L, Wang XH (2007a) The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review. Biogeosciences 4:219–232CrossRefGoogle Scholar
  49. Müller WEG, Boreiko A, Wang XH, Belikov SI, Wiens M, Grebenjuk VA, Boreiko A, Schloßmacher U, Schröder HC (2007b) Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Gene 395:62–71CrossRefGoogle Scholar
  50. Müller WEG, Wang XH, Belikov SI, Tremel W, Schloßmacher U, Natoli A, Brandt D, Boreiko A, Tahir MN, Müller IM and Schröder HC (2007c) Formation of siliceous spicules in dem-osponges: example Suberites domuncula. In: Bäuerlein E (ed) Handbook of biomineralization, vol 1. Biological aspects and biology of biominerals structure formation. Wiley-VCH, Weinheim, pp 59–82CrossRefGoogle Scholar
  51. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pancer Z, Kruse M, Müller I, Müller WEG (1997) On the origin of adhesion receptors of metazoa: cloning of the integrin α subunit cDNA from the sponge Geodia cydonium. Mol Biol Evol 14:391–398CrossRefGoogle Scholar
  53. Perović-Ottstadt S, Ćetković H, Gamulin V, Schröder HC, Kropf K, Moss C, Korzhev M, Diehl-Seifert B, Müller IM, Müller WEG (2004) Molecular markers for germ cell differentiation in the demosponge Suberites domuncula. Int J Dev Biol 48:293–305CrossRefGoogle Scholar
  54. Pfeifer K, Haasemann M, Gamulin V, Bretting H, Fahrenholz F, Müller WEG (1993) S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiol 3:179–184CrossRefGoogle Scholar
  55. Pilcher H (2005) Back to our roots. Nature 435:1022–1023CrossRefGoogle Scholar
  56. Reitner J (1992) Ćoralline Spongien. Der Versuch einer phylogenetisch-taxonomischen Analyse. Berliner Geowiss Abh (E) 1:1–352Google Scholar
  57. Reitner J, Mehl D (1995) Early Paleozoic diversification of sponges: new data and evidences. Geol Paläont Mitt Innsbruck 20:335–347Google Scholar
  58. Retallack GJ (1994) Were the Ediacaran fossils lichens? Paleobiology 20:523–544CrossRefGoogle Scholar
  59. Rice HN, Halverson GP, Hoffmann PF (2003) Three for the Neoproterozoic: Sturtian, Marinoan and Varanger glaciations. EGS-AGU-EUG Joint Assembly, Nice, France, April 2003Google Scholar
  60. Rigby JK, Hou X-G (1995) Lower Cambrian demosponges and hexactinellid sponges from Yunnan, China. J Paleontol 69:1009–1019CrossRefGoogle Scholar
  61. Schäcke H, Müller IM, Müller WEG (1994) Tyrosine kinase from the marine sponge Geodia cydonium: the oldest member belonging to the receptor tyrosine kinase class II family. In: Müller WEG (ed) Use of aquatic invertebrates as tools for monitoring of environmental hazards. Gustav Fischer Verlag, New York/Stuttgart, pp 201–211Google Scholar
  62. Schulze FE (1887) Zur Stammesgeschichte der Hexactinelliden. Akademie der Wissenschaften, BerlinGoogle Scholar
  63. Schütze J, Reis Ćustodio M, Efremova SM, Müller IM, Müller WEG (1999) Evolutionary relationship of Metazoa within the eukaryotes based on molecular data from Porifera. Proc Roy Soc Lond B 266:63–73CrossRefGoogle Scholar
  64. Seilacker A (1989) Vendozoa: Organismic construction in the proterozoic biosphere. Lethaia 22:229–239CrossRefGoogle Scholar
  65. Steiner M, Mehl D, Reitner J, Erdtmann BD (1993) Oldest entirely preserved sponges and other fossils from the Lowermost Ćambrian and a new facies reconstruction of the Yangtze Platform (China). Berliner Geowiss Abh (E) 9:293–329Google Scholar
  66. Thakur NL, Perović-Ottstadt S, Batel R, Korzhev M, Diehl-Seifert B, Müller IM, Müller WEG (2005) Innate immune defense of the sponge Suberites domuncula against gram-positive bacteria: induction of lysozyme and AdaPTin. Marine Biol 146:271–282CrossRefGoogle Scholar
  67. Walker G (2003) Snowball earth: the story of the great global catastrophe that spawned life as we know it. Crown Publishers, New YorkGoogle Scholar
  68. Weissenfels (1989) Biologie und Mikroskopische Anatomie der Süßwasserschwämme (Spongillidae). Gustav Fischer Verlag, StuttgartGoogle Scholar
  69. Wiens M, Müller WEG (2006) Cell death in Porifera: molecular players in the game of apoptotic cell death in living fossils. Can J Zool/Rev Can Zool 84:307–321CrossRefGoogle Scholar
  70. Wiens M, Mangoni A, D'Esposito M, Fattorusso E, Korchagina N, Schröder HC, Grebenjuk VA, Krasko A, Batel R, Müller IM, Müller WEG (2003) The molecular basis for the evolution of the metazoan bodyplan: extracellular matrix-mediated morphogenesis in marine demos-ponges. J Mol Evol 57:1–16CrossRefGoogle Scholar
  71. Wiens M, Perović-Ottstadt S, Müller IM, Müller WEG (2004) Allograft rejection in the mixed cell reaction system of the demosponge Suberites domuncula is controlled by differential expression of apoptotic genes. Immunogenetics 56:597–610CrossRefGoogle Scholar
  72. Wiens M, Korzhev M, Krasko A, Thakur NL, Perović-Ottstadt S, Breter HJ, Ushijima H, Diehl-Seifert B, Müller IM, Müller WEG (2005) Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway: induction of a perforin-like molecule. J Biol Chem 280:27949–27959CrossRefGoogle Scholar
  73. Wolpert L (1998) Principles of development. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Werner E. G. Müller
    • 1
  • Xiaohong Wang
    • 1
  • Heinz C. Schröder
    • 1
  1. 1.National Research Center for GeoanalysisBeijingChina

Personalised recommendations