Advertisement

Sustainable Exploitation and Conservation of the Endemic Lake Baikal Sponge (Lubomirskia baicalensis) for Application in Nanobiotechnology

  • Werner E. G. Müller
  • Heinz C. Schröder
  • Sergey I. Belikov
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 47)

Abstract

The large sub-continent of Siberia is one of the richest mineral and oil resources on Earth. In its center, one region has gained prominence: Lake Baikal. It is one of the oldest, the deepest, and the lake with the greatest volume on Earth and is inhabited by more than 1,500 endemic species. It was Pallas (1771) who discovered in the lake a sponge species, Lubomirskia baicalensis (Porifera: Demospongiae), which dominates Lake Baikal's littoral-zone benthos. This sponge species has a distinguished, pronounced body plan which is composed of modules. The application of molecular biological and cell biological techniques has allowed an insight into the richness of the genomic regulatory systems of L. baicalensis. Predominantly present are those genes which are involved in body plan formation, e.g., signal transduction, stress response, and morphogenesis. The value of this species for the understanding of the evolutionary processes is reflected by recent studies on the monophyly of Lake Baikal endemic sponge species; L. baicalensis is a reference animal for other endemic sponges of this area, such as in the Tuva region (Lake Dzhegataj). In addition, L. baicalensis gained special interest for bio-medicine after the identification of the enzyme, silicatein, which catalyzes biosilica formation for the synthesis of the siliceous skeletal elements, the spicules. The sustainable use of this enzyme became feasible after the achievement of recombinant preparations. The huge impact of the recombinantly prepared biosilica for nano-technology in general cannot yet be quantified, e.g., in the field of new materials (biozirconia and biotitania) or in semiconductor technology.

Keywords

Marine Sponge Sponge Species Siliceous Sponge Freshwater Sponge Axial Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adell T, Gamulin V, Perović-Ottstadt S, Wiens M, Korzhev M, Müller IM, Müller WEG (2004) Evolution of metazoan cell junction proteins: the scaffold protein MAGI and the transmem-brane receptor tetraspanin in the demosponge Suberites domuncula. J Mol Evol 59:41–50CrossRefGoogle Scholar
  2. Adell T, Grebenjuk VA, Wiens M, Müller WEG (2003a) Isolation and characterization of two T-box genes from sponges, the phylogenetically oldest metazoan taxon. Dev Genes Evol 213:421–434CrossRefGoogle Scholar
  3. Adell T, Nefkens I, Müller WEG (2003b) Polarity factor “Frizzled” in the demosponge Suberites domuncula: identification, expression and localization of the receptor in the epithelium/pina-coderm. FEBS Lett 554:363–368CrossRefGoogle Scholar
  4. Annandale N (1913) Notes on some sponges from Lake Baikal in the collection of the Imperial Academy of Science [St. Petersburg]. Ann Mus Zool Acad Sci St. Petersburg 18:18–101Google Scholar
  5. Annandale N (1914) Further notes on the sponges of Lake Baikal. Rec Indian Mus 10:137–148Google Scholar
  6. Brasier M, Green O, Shields G (1997) Ediacarian sponge spicule clusters from southwest Mongolia and the origins of the Cambrian fauna. Geology 25:303–306CrossRefGoogle Scholar
  7. Burkharov AA, Fialkov VA (1996) Geological structure of Lake Baikal bottom. Observation from “Pisces.” Nauka, NovosibirskGoogle Scholar
  8. Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365CrossRefGoogle Scholar
  9. Conway Morris S (1998) The crucible of creation. Oxford University Press, OxfordGoogle Scholar
  10. Dybowski W (1880) Studien über die Spongien des Russischen Reiches mit besonderer Berücksichtigung des Baikal-Sees. Académie Impériale des Sciences, St. Petersburg, pp. 1–71.Google Scholar
  11. Dybowski W (1884) Some remarks upon the variability of form in Lubomirskia baicalensis, and upon the distribution of the Baikal sponges in general. Ann Mag Nat Hist/Zool 7:29–34CrossRefGoogle Scholar
  12. Eberhard JP (1751) Abhandlung von dem Ursprung der Perle. Rengerische Buchhandlung, HalleGoogle Scholar
  13. Efremova SM (2001) Porifera. Index of Animal species inhabiting Lake Baikal and its catchment area. Nauka, Novosibirsk, vol 1. Lake Baikal, Book 1, pp 182–192Google Scholar
  14. Galaziy GI (1988) Baikal v voprosakh i otvetakh. Publishing House “Mysyl,” Moscow, 286 ppGoogle Scholar
  15. Georgi J (1797) Geographisch-physikalische und Naturhistorische Beschreibung des Rußischen Reichs. Five volumes. F. Nicolovius, KönigsbergGoogle Scholar
  16. Gmelin JG (1751) Reise durch Sibirien. Abram Vandenhoecks, GöttingenGoogle Scholar
  17. Goldberg EL, Chebykin EP, Vorobyova SS, Grachev MA (2005) Uranium signals of paleoclimate humidity recorded in sediments of Lake Baikal. Doklady Akademii Nauk 400:72–77Google Scholar
  18. Greze VN, Greze II (1958) Ozero Chagytai. Izvestija Vsesoyuznogo Geographiceskogo Obscestva 90:279–284Google Scholar
  19. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP. (1998) A neoproterozoic snowball earth. Science 281:1342–1346CrossRefGoogle Scholar
  20. Humboldt A v (1844) Central Asien. Untersuchungen über die Gebirgsketten und die ver-gleichende Klimatologie. 2 vols. CJ Klemann, BerlinGoogle Scholar
  21. Itskovich VB, Belikov SI, Efremova SM, Masuda Y (1999) Phylogenetic relationships between Lubomirskiidae, Spongillidae and some marine sponges according partial sequences of 18S rDNA. Mem Queensland Mus 44:275–280Google Scholar
  22. Johansen H (1925) Der Baikalsee. Mitteilungen der Geographischen Gesellschaft München 18:1–200Google Scholar
  23. Kaluzhnaya OV, Belikov SI, Schröder HC, Rothenberger M, Zapf S, Kaandorp JA, Borejko A, Müller IM, Müller WEG (2005a) Dynamics of skeletal formation in the Lake Baikal sponge Lubomirskia baicalensis. Part I: biological and biochemical studies. Naturwissenschaften 92:128–133CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kaluzhnaya OV, Belikov SI, Schröder HC, Wiens M, Giovine M, Krasko A, Müller IM, Müller WEG (2005b) Dynamics of skeletal formation in the Lake Baikal sponge Lubomirskia bai-calensis. Part II: Molecular biological studies. Naturwissenschaften 92:134–138CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kozhov M (1963) Lake Baikal and its life. Junk, The HagueCrossRefGoogle Scholar
  26. Krasko A, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myo-trophin. Eur J Biochem 267:4878–4887CrossRefGoogle Scholar
  27. Krasko A, Schröder HC, Batel R, Grebenjuk VA, Steffen R, Müller IM, Müller WEG (2002) Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol 21:67–80CrossRefGoogle Scholar
  28. Lesseps JBB de (1791) Reise von Kamtschatka nach Frankreich. Johannes F Hartknoch, RigaGoogle Scholar
  29. Loomis WF (1988) Four billion years. Sinauer, Sunderland, MAGoogle Scholar
  30. Manconi R, Pronzato R (2000) Suborder Spongillina subord. Nov.: freshwater sponges. In: Hooper JNA, Van Soest RWM (eds) Systema Porifera: a guide to the classification of sponges. Kluwer/Plenum, New York, pp 921–1019Google Scholar
  31. Martinson GG (1948) Fossil sponges from the Tunka-Depression in Prebaikal. [Iskopaemye gubki iz Tunkinskoi kotloviny v Pribaikalye]. Doklady Akademii Nauk SSSR 61:897–900 (in Russian)Google Scholar
  32. Masuda Y, Itskovich VB, Veinberg EV, Efremova SM (1997) Studies on the taxonomy and distribution of freshwater sponges in the Lake Baikal. In: Miyzaki N (ed) Animal community, environment and phylogeny in Lake Baikal. Otsuchi Marine Center/Ocean Research Institute, Tokyo, pp. 21–41Google Scholar
  33. Mats VD (1990) The original and evolution of the Baikal basin. In: Kvasov DD (ed) History of lakes of the USSR: Ladozhskoye, Onezhskoye, Pskovsko, Chudskoye, Baikal, Khanka. Nauka, Leningrad, pp 167–19Google Scholar
  34. Mats VD, Fujii S, Mashiko K, Osipov EY, Yefrimova IM, Klimansky AV (2000) Changes in Lake Baikal water levels and runoff direction in the Quaternary period. In: Minoura K (ed) Lake Baikal. Elsevier, Amsterdam, pp 15–34CrossRefGoogle Scholar
  35. Mehl-Janussen D, Eckert C, Veinberg EV (2000) Investigations on the endemic freshwater Porifera of Lake Baikal (Lubomirskiidae): status and perspectives. Terra Nostra 9:49–59Google Scholar
  36. Morse DE (1999) Silicon biotechnology: harnessing biological silica production to construct new materials. Trends Biotechnol 17:230–232CrossRefGoogle Scholar
  37. Müller GF (1732–1764) Sammlungen russischer Geschichte. St. PetersburgGoogle Scholar
  38. Müller GF (1779) Sammlung Rußischer Geschichte des Herrn Geheimraths Müllers in Moscow. Effenbach: U. Weiß; five volumesGoogle Scholar
  39. Müller WEG (1995) Molecular phylogeny of Metazoa (animals): monophyletic origin. Naturwissenschaften 82:321–329CrossRefPubMedPubMedCentralGoogle Scholar
  40. Müller WEG (ed) (1998a) Molecular evolution: evidence for monophyly of Metazoa. Progress in Molecular Subcellular Biology, vol 19. Springer Verlag, Berlin/Heidelberg/New YorkGoogle Scholar
  41. Müller WEG (1998b) Origin of Metazoa: sponges as living fossils. Naturwissenschaften 85:11–25CrossRefPubMedPubMedCentralGoogle Scholar
  42. Müller WEG (2001) How was metazoan threshold crossed: the hypothetical Urmetazoa. Comparative Biochemistry and Physiology [A] 129:433–460CrossRefGoogle Scholar
  43. Müller WEG (2006) The stem cell concept in sponges (Porifera): metazoan traits. Semin Cell Dev Biol 17:481–491CrossRefGoogle Scholar
  44. Müller WEG, Müller IM (2003) Origin of the metazoan immune system: identification of the molecules and their functions in sponges. Integrative and Comparative Biology 43:281–292CrossRefGoogle Scholar
  45. Müller WEG, Wiens M, Batel R, Steffen R, Borojevic R, Custodio MR (1999) Establishment of a primary cell culture from a sponge: Primmorphs from Suberites domuncula. Mar Ecol Prog Series 178:205–219CrossRefGoogle Scholar
  46. Müller WEG, Koziol C, Wiens M, Schröder HC (2000) Stress response in marine sponges: genes and molecules involved and their use as biomarkers. In: Storey KB, Storey J (eds) Environmental stressors and gene responses. Elsevier Science, Amsterdam, pp 193–208CrossRefGoogle Scholar
  47. Müller WEG, Schröder HC, Skorokhod A, Bünz C, Müller IM, Grebenjuk VA (2001) Contribution of sponge genes to unravel the genome of the hypothetical ancestor of Metazoa (Urmetazoa). Gene 276:161–173CrossRefGoogle Scholar
  48. Müller WEG, Krasko A, Le Pennec G, Steffen R, Ammar MSA, Wiens M, Müller IM, Schröder HC (2003) Molecular mechanism of spicule formation in the demosponge Suberites domuncula: silicatein – collagen – myotrophin. Prog Mol Subcell Biol 33:195–22CrossRefPubMedPubMedCentralGoogle Scholar
  49. Müller WEG, Schröder HC, Lorenz B, Krasko A (2004a) Silicatein-mediated synthesis of amorphous silicates and siloxanes and use thereof. European Patent No. 1320624Google Scholar
  50. Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM (2004b) The Bauplan of the Urmetazoa: The basis of the genetic complexity of Metazoa using the siliceous sponges [Porifera] as living fossils. Int Rev Cytol 235:53–92CrossRefGoogle Scholar
  51. Müller WEG, Belikov SI, Schröder HC (2005a) Biosilica, the raw material of the coming millennium: sustainable production in Lake Baikal. Science First Hand 3:26–35 (in Russian)Google Scholar
  52. Müller WEG, Krasko A, Schröder HC (2005b) In vitro and in vivo degradation or synthesis of silicon dioxide and silicones, useful e.g., for treating silicosis or to prepare prosthetic materials, using a new silicase enzyme. Patent No. DE10246186.Google Scholar
  53. Müller WEG, Belikov SI, Tremel W, Perry CC, Gieskes WWC, Boreiko A, Schröder HC (2006a) Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37:107–120CrossRefGoogle Scholar
  54. Müller WEG, Kaluzhnaya OV, Belikov SI, Rothenberger M, Schröder HC, Reiber A, Kaandorp JA, Manz B, Mietchen D, Volke F (2006b) Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis. J Struct Biol 153:31–41CrossRefPubMedPubMedCentralGoogle Scholar
  55. Müller WEG, Schröder HC, Wrede P, Kaluzhnaya OV, Belikov SI (2006c) Speciation of sponges in Baikal-Tuva region (an outline). J Zool Syst Evol Res J 44:105–117CrossRefGoogle Scholar
  56. Müller WEG, Wendt K, Geppert C, Wiens M, Reiber A, Schröder HC (2006d) Novel photore-ception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi. Biosens Bioelectron 21:1149–1155CrossRefPubMedPubMedCentralGoogle Scholar
  57. Müller WEG, Boreiko A, Wang XH, Belikov SI, Wiens M, Grebenjuk VA, Schloßmacher U, Schröder HC (2007) Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Gene 395:62–71CrossRefGoogle Scholar
  58. William A (1814) Picturesque representations of the dress and manners of the Russians. John Murray, LondonGoogle Scholar
  59. Pallas PS (1771) Reise durch die verschiedenen Provinzen des russischen Reiches. Theil 3-Buch 2. Kayserliche Academie der Wissenschaften, St. PetersburgGoogle Scholar
  60. Pallas PS (1787) Charakteristik der Thierpflanzen. Raspische Buchhandlung, NürnbergGoogle Scholar
  61. Pechenik JA (2000) Biology of the invertebrates. McGraw-Hill, Boston, MAGoogle Scholar
  62. Pecher IA (2002) Gas hydrates on the brink. Nature 420:622–623CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pilcher H (2005) Back to our roots. Nature 435:1022–1023CrossRefGoogle Scholar
  64. Popovskaya GI, Genkal SI, Likhoshway YV (2002) Diatoms of the plankton of Lake Baikal. Nauka, NovosibirskGoogle Scholar
  65. Pronzato R, Manconi R. 2001. Atlas of European freshwater sponges. Ann Mus Civ St Nat Ferrara 4:3–64Google Scholar
  66. Reitner J, Wörheide G (2002) Non-lithistid Demospongiae – origins of their palaeobiodiversity and highlights in history of preservation. In: Hooper JNA, Van Soest RWM (eds) Systema Porifera: a guide to the classification of sponges. Kluwer/Plenum, New York, pp 52–70Google Scholar
  67. Rezvoj P (1927) Notes on sponges from the Lake Dzhegataj-kul in the Urjankhaj region. Doklady Akademii Nauk SSSR 3/8:296–300Google Scholar
  68. Rezvoj PD (1936) Süßwasserschwämme (Fam. Spongillidae et Lubomirskiidae). Faune De L'URSS vol. 2 (no. 2)]. Moskau Leningrad: Izdatelstvo Akademii Nauk SSSR 105–124 (in German)Google Scholar
  69. Röpstorf P, Reitner J (1994) Morphologie einiger Süßwasserporoifera (Baikalospongia bacil-lifera, Lubomirskia baicalensis, Swartschweskia papyracea) des Baikal-Sees (Sibirien, Rußland). Berliner Geowiss Abh E13:507–525Google Scholar
  70. Sankov VA, Parfeevets AV, Miroshnitchenko AI, Lukhnev A, Arzhannikova AV (2003) Cenozoic dynamics of Baikal and Khubsugul basins. Berliner Paläontol Abh 4: 49–54Google Scholar
  71. Savarese M, Patterson MR, Chernykh VI, Fialkov VA (1997) Trophic effects of sponge feeling within Lake Baikal's littoral zone. 1. In situ pumping rate. Limnol Oceanogr 42:171–178CrossRefGoogle Scholar
  72. Schäcke H, Müller IM, Müller WEG (1994) Tyrosine kinase from the marine sponge Geodia cydonium: the oldest member belonging to the receptor tyrosine kinase class II family. In: Müller WEG (ed) Use of aquatic invertebrates as tools for monitoring of environmental hazards. Gustav Fischer Verlag, Stuttgart/New York, pp 201–211Google Scholar
  73. Scherer AN (1820) Versuch einer systematischen Uebersicht der Heilquellen des Russischen Reichs. Akademie der Wissenschaften, St. PetersburgGoogle Scholar
  74. Schröder HC, Efremova SM, Itskovich VB, Belikov S, Masuda Y, Krasko A, Müller IM, Müller WEG (2003a) Molecular phylogeny of the freshwater sponges in Lake Baikal. J Zool Sys Evol Res 41:80–86CrossRefGoogle Scholar
  75. Schröder HC, Krasko A, Le Pennec G, Adell T, Hassanein H, Müller IM, Müller WEG (2003b) Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. Prog Mol Subcell Biol 33:249–268CrossRefGoogle Scholar
  76. Schröder HC, Perović-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller IM, Müller WEG (2004) Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J 381 665–673CrossRefPubMedPubMedCentralGoogle Scholar
  77. Schröder HC, Boreiko A, Krasko A, Reiber A, Schwertner H, Müller WEG (2005) Mineralization of SaOS-2 cells on enzymatically (Silicatein) modified bioactive osteoblast-stimulating surfaces. J Biomed Mat Res Part B: Appl Biomat 75B: 387–392CrossRefGoogle Scholar
  78. Schröder HC, Boreiko A, Korzhev M, Krasko A, Tahir MN, Tremel W, Eckert C, Ushijima H. Müller IM, Müller WEG (2006) Co-expression and functional interaction of silicatein with galectin: Matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J Biol Chem 281:12001–12009CrossRefPubMedPubMedCentralGoogle Scholar
  79. Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95: 6234–6238CrossRefGoogle Scholar
  80. Simpson TL (1984) The cell biology of sponges. Springer-Verlag, New YorkCrossRefGoogle Scholar
  81. Steiner M, Mehl D, Reitner J, Erdtmann BD (1993) Oldest entirely preserved sponges and other fossils from the Lowermost Cambrian and a new facies reconstruction of the Yangtze Platform (China). Berliner Geowiss Abh (E) 9:293–329Google Scholar
  82. Strahlenberg PJ (1730) Das Nord- und Ostliche Theil von Europa und Asia. Autoris, StockholmGoogle Scholar
  83. Tahir MN, Théato P, Müller WEG, Schröder HC, Janshoff A, Zhang J, Huth J, Tremel W (2004) Monitoring the formation of biosilica catalysed by histidin-tagged silicatein. Chem Commun 24:2848–2849CrossRefGoogle Scholar
  84. Tahir MN, Théato P, Müller WEG, Schröder HC, Borejko A, Faiß S, Janshoff A, Huth J, Tremel W (2005) Formation of layered titania and zirconia catalysed by surface-bound silicatein. Chem Commun 44:5533–5535CrossRefGoogle Scholar
  85. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  86. Weissenfels N (1989) Biologie und Mikroskopische Anatomie der Süßwasserschwämme (Spongillidae). Gustav Fischer Verlag, Stuttgart.Google Scholar
  87. Wiens M, Müller WEG (2006) Cell death in Porifera: molecular players in the game of apoptotic cell death in living fossils. Can J Zool/Rev Can Zool 84:307–321CrossRefGoogle Scholar
  88. Wiens M, Belikov SI, Kaluzhnaya OV, Krasko A, Schröder HC, Perovic-Ottstadt S, Müller WEG (2006) Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and Mago Nashi. Dev Genes Evol 216:229–242CrossRefGoogle Scholar
  89. Winter E, Uschmann G, Jarosch GDG (1968) Messerschmidt Forschungsreise durch Sibirien 1720–1727. Akademie-Verlag, BerlinGoogle Scholar
  90. Wöhler F (1828) Ueber künstliche Bildung des Harnstoffs. Annalen der Physik und Chemie 12: 253–256CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Werner E. G. Müller
    • 1
  • Heinz C. Schröder
    • 1
  • Sergey I. Belikov
    • 2
  1. 1.Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, UniversitätMainzGermany
  2. 2.Limnological Institute of the Siberian Branch of Russian Academy of Sciences, Laboratory for Analytical/Bioorganic ChemistryIrkutskRussia

Personalised recommendations