Advertisement

An Overview of Silica in Biology: Its Chemistry and Recent Technological Advances

  • Carole C. Perry
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 47)

Abstract

Biomineralisation is widespread in the biological world and occurs in bacteria, single-celled protists, plants, invertebrates and vertebrates. Minerals formed in the biological environment often show unusual physical properties (e.g. strength, degree of hydration) and often have structures that exhibit order on many length scales. Biosilica, found in single cell organisms through to higher plants and primitive animals (sponges), is formed from an environment that is undersaturated with respect to silicon and under conditions of around neutral pH and low temperature, ca. 4–40°C. Formation of the mineral may occur intra- or extra-cellularly, and specific biochemical locations for mineral deposition that include lipids, proteins and carbohydrates are known. In most cases, the formation of the mineral phase is linked to cellular processes, understanding of which could lead to the design of new materials for biomedical, optical and other applications. This Chapter briefly describes the occurrence of silica in biology including known roles for the mineral phase, the chemistry of the material, the associated biomolecules and some recent applications of this knowledge in materials chemistry.

The terminology which is used in this and other contributions within this volume is as follows:
  • Si: the chemical symbol for the element and the generic term used when the nature of the specific silicon compound is not known.

  • Si(OH)4: orthosilicic acid, the fundamental building block used in the formation of silicas.

  • SiO2nH2O or SiO2−x(OH)2x2H2O: amorphous, hydrated, polymerised material.

  • Oligomerisation: the formation of dimers and small oligomers from orthosilicic acid by removal of water. For example, 2Si(OH)4 ↔ (HO)3Si–O–Si(OH)3 + H2O

  • Polymerisation: the mutual condensation of silicic acid to give molecularly coherent units of increasing size.

  • Organosilicon compound: must contain silicon covalently bonded to carbon within a distinct chemical species

  • Silane: a compound having silicon atom(s) and organic chemical groups often connected through an oxygen linkage; e.g. tetrethoxy or tetramethoxysilane

  • Silanol: hydroxyl group bonded to silicon atom

  • Silicate: a chemically specific ion having negative charge (e.g. \({\rm{SiO}}_3 {}^{2 - }\)), term also used to describe salts (e.g. sodium silicate Na2SiO3)

  • Opal: the term used to describe the gem-stone and often used to describe the type of amorphous silica produced by biological organisms. The two are similar in structure at the molecular level (disordered or amorphous), but at higher levels of structural organisation are distinct from one another.

Keywords

Silicic Acid Silica Structure Titanium Phosphate Silica Deposition Orthosilicic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Annenkov VV, Patwardhan SV, Belton D, Danilovtseva EN, Perry CC (2006) A new stepwise synthesis of a family of propylamines derived from diatom silaffins and their activity in silicification Chem. Commun. 14:1521–1523Google Scholar
  2. Bao ZH, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang ZT, Abernathy HW, Summers CJ, Liu ML, Sandhage KH (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446(7132):172–175CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bélanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp tritici). Phytopathology 93:402–412CrossRefPubMedPubMedCentralGoogle Scholar
  4. Belton DJ, Paine G, Patwardhan SV, Perry CC (2004) Towards an understanding of (bio)silicification: the role of amino acids and lysine oligomers in silicification. J. Mater. Chem. 14:2231–2241CrossRefGoogle Scholar
  5. Belton DJ, Patwardham S V, Perry CC (2005a) Putrescine homologues control silica morphogenesis by electrostatic interactions and the hydrophobic effect. Chem. Commun. 3475–3477Google Scholar
  6. Belton DJ, Patwardhan S V, Perry CC (2005b) Spermine, spermidine and their analogues generate tailored silcas. J. Mater. Chem. 15:4629–4638CrossRefGoogle Scholar
  7. Blank GS, Sullivan CW (1983) Diatom mineralization of silicic acid. VI. The effects of microtu-bule inhibitors on silicic acid metabolism in Navicula saprophila. J. Phycol. 19:39–44CrossRefGoogle Scholar
  8. Brott LL, Naik RR, Pikas DJ, Kirkpatrick SM, Tomlin DW, Whitlock PW, Clarson SJ, Stone MO (2001) Ultrafast holographic nanopatterning of biocatalytically formed silica. Nature 413(6853):291–293CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cai Y, Allan SM, Sandhage KH (2005) Three-dimensional magnesia-based nanocrystal assemblies via low temperature magnesiothermic reaction of diatom microshells. J. Am. Ceram. Soc. 88(7):2005–2010CrossRefGoogle Scholar
  10. Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl. Acad. Sci. USA 96:361–365CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chérif M, Benhamou N, Menzies JG, Bélanger RR (1992) Silicon induced resistance in cucumber plants against Pythium ultimum. Physiol. Mol. Plant Pathol. 41:411–425CrossRefGoogle Scholar
  12. Chérif M, Asselin A, Bélanger RR (1994) Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84:236–242CrossRefGoogle Scholar
  13. Chiappino ML, Volcani BE (1977) Studies on the biochemistry and fine structure of silica shell formation in diatoms. VIII. Sequential cell wall development in the pennate Navicula pelliculosa. Protoplasma 93:205–221CrossRefGoogle Scholar
  14. Cole KE, Ortiz AN, Schoonen MA, Valentine AM (2006) Peptide- and long-chain polyamine-induced synthesis of micro- and nanostructured titanium phosphate and protein encapsulation. Chem. Mater. 18(19):4592–4599CrossRefGoogle Scholar
  15. Coombs J, Volcani BE (1968) Studies on the biochemistry and fine structure of silica-shell formation in diatoms. Chemical changes in the wall of Navicula pelliculosa during its formation. Planta 82:280–292PubMedPubMedCentralGoogle Scholar
  16. Coradin T, Livage J (2001) Effect of some amino acids and peptides on silicic acid polymerisation. Coll. Surf. B: Biointerfaces 21:329–336CrossRefGoogle Scholar
  17. Curnow P, Bessett PH, Kisailus D, Murr MM, Daugherty PS, Morse DE (2005) Enzymatic synthesis of layered titanium phosphates at low temperature and neutral pH by cell-surface display of silicatein-alpha. J. Am. Chem. Soc. 127(45):15749–15755CrossRefPubMedPubMedCentralGoogle Scholar
  18. Curnow P, Kisailus D, Morse DE (2006) Biocatalytic synthesis of poly(L-lactide) by native and recombinant forms of the silicatein enzymes Angew. Chem. Int. Ed. 45(4):613–616CrossRefGoogle Scholar
  19. Currie HA, Perry CC (2007) Silica in plants. Annals in Botany 100:1383–1389, doi: 10.1093/aob/mcm247CrossRefGoogle Scholar
  20. Dickerson MB, Naik RR, Sarosi PM, Agarwal G, Stone MO, Sandhage KH (2005) Ceramic nano-particle assemblies with tailored shapes and tailored chemistries via biosculpting and shape preserving inorganic conversion. J. Nanosci. Nanotechnol. 5(1):63–67CrossRefPubMedPubMedCentralGoogle Scholar
  21. Epstein E (1994) The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA 91:11–17CrossRefPubMedPubMedCentralGoogle Scholar
  22. Epstein E (1999) Silicon. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50:641–664CrossRefGoogle Scholar
  23. Fawe A, Abou-Zaid M, Menzies JG, Bélanger RR (1998) Silicon-mediated accumulation of flavinoid phytoalexins in cucumber. Phytopathology 88:396–401CrossRefPubMedPubMedCentralGoogle Scholar
  24. Foo CWP, Patwardhan SV, Belton DJ, Kitchel B, Anastasiades D, Huang J, Naik RR, Perry CC, Kaplan DL (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc. Natl. Acad. Sci. 103(25):9428–9433CrossRefGoogle Scholar
  25. Frigeri LG, Radabaugh TR, Haynes PA, Hildebrand M (2006) Identification of proteins from a cell wall fraction of the diatom Thalassiosira pseudonana – Insights into silica structure formation. Mol. Cell. Proteomics 5(1):182–193CrossRefPubMedPubMedCentralGoogle Scholar
  26. Harrison CC (1996) Evidence for intramolecular macromolecules containing protein from plant silicas. Phytochemistry 41:37–42CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hildebrand M, Volcani BE, Gassmann W, Schroeder JI (1997) A gene family of silicon transporters. Nature 385:688–689CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hildebrand M, Dahlin K, Volcani BE (1998) Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: sequences, expression analysis, and identification of homologs in other diatoms. Mol. Gen. Genet. 260:480–486CrossRefPubMedPubMedCentralGoogle Scholar
  29. Iler RK. 1979. The chemistry of silica. Wiley, New YorkGoogle Scholar
  30. Kauss H, Seehaus, K, Franke R, Gilbert S, Dietrich RA, Kröger N (2003) Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant J 33:87–95CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kidd PS, Llugany M, Gunsé B, Barceló J (2001) The role of root exudates in aluminium resistance and silicon induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 52:1339–1352PubMedPubMedCentralGoogle Scholar
  32. Kim DJ, Lee KB, Chi YS, Kim WJ, Paik HJ, Choi IS (2004) Biomimetic formation of silica thin films by surface-initiated polymerisation of 2-(dimethylamino) ethyl methacrylate and silicic acid. Langmuir 20(19):7904–7906CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kisailus D, Choi JH, Weaver JC, Yang WJ, Morse DE (2005) Enzymatic synthesis and nanostruc-tural control of gallium oxide at low temperature. Adv. Mater. 17(3):314–318CrossRefGoogle Scholar
  34. Knecht MR, Wright DW (2003) Functional analysis of the biomimetic silica precipitating activity of the R5 peptide from Cylindrotheca fusiformis. Chem. Commun. 24:3038–3039CrossRefGoogle Scholar
  35. Knecht MR, Wright DW (2004) Amine-terminated dendrimers as biomimetic templates for silica nanosphere formation. Langmuir 20(11):4728–4732CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kröger N, Deutzmann R, Bergsdorf C, Sumper M (2000) Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. USA 97:14133–14138CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kröger N, Deutzmann R, Sumper M (2001) Silica-precipitating peptides from diatoms, the chemical structure of silaffin-1a from Cylindotheca fusiformis. J. Biol. Chem. 276:26066–26070CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kusari U, Bao Z, Cai Y, Ahmad G, Sandhage KH, Sneddon LG (2007) Formation of nanostruc-tured, nanocrystalline boron nitride microparticles with diatom-derived 3-D shapes. Chem. Commun. 11:1177–1179CrossRefGoogle Scholar
  41. Liang YC, Sun WC, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollut. 147(2):422–428CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lenoci L, Camp PJ (2006) Self-assembly of peptide scaffolds in biosilica formation: Computer simulation of a coarse-grained model. J. Am. Chem. Soc. 128(31):10111–10117CrossRefPubMedPubMedCentralGoogle Scholar
  43. Levi C, Barton JL, Guillemet C, le Bras E, Lehuede P (1989) A remarkably strong natural glassy rod- the anchoring spicule of the monraphis sponge. J. Mater. Sci. Lett. 8(3):337–339CrossRefGoogle Scholar
  44. Luckarift HR, Spain JC, Naik RR, Stone MO (2004) Enzyme immobilization in a biomimetic support. Nat. Biotechnol. 22(2):211–213CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ma J-F, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11:392–397CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ma J-F, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–669CrossRefPubMedPubMedCentralGoogle Scholar
  47. Maldonado M, Carmona MC, Uriz MJ, Cruzado A (1999) Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature 401:785–787CrossRefGoogle Scholar
  48. Mann S, Perry CC (1986) Structural aspects of biogenic silica. Ciba Found. Symp. 121:40–58PubMedPubMedCentralGoogle Scholar
  49. Mitani N, Ma J-F (2005) Uptake system of silicon in different plant species. J. Exp. Biol. 56:1255–1261Google Scholar
  50. Moussa HR (2006) Influence of exogenous application of silicon on physiological response of salt stressed maize (Zea mays L.). Int. J. Agric. Biol. 8:293–297Google Scholar
  51. Müller WEG, Rothernberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res. 321:285–297CrossRefPubMedPubMedCentralGoogle Scholar
  52. Naik RR, Whitlock PW, Rodriguez F, Brott LL, Glawe DD, Clarson SJ, Stone MO (2003) Controlled formation of biosilica structures in vitro. Chem. Commun. 24:238–239CrossRefGoogle Scholar
  53. Nakajima T, Volcani BE (1970) Eta-N-trimethyl-L-gamma hydroxylysine phosphate and its non-phosphorylated compound in diatom cell walls. Biochem. Biophys. Res. Commun. 39:28–33CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nakajima T, Volcani BE (1969) 3,4-dihydroxyproline: a new amino acid in diatom cell walls. Science 164:1400–1401CrossRefPubMedPubMedCentralGoogle Scholar
  55. Neuman D, zur Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochem. 56:685–692CrossRefGoogle Scholar
  56. Patwardhan SV, Clarson SC (2002) Silicification and Biosilicification Part 3: role of synthetic polymers and polypeptides at neutral pH. Silicon Chem. 1(3):207–214CrossRefGoogle Scholar
  57. Patwardhan SV, Maheshwari R, Mukherjee N, Kiick KL, Clarson SJ (2006) Conformation and assembly of polypeptide scaffolds in templating the synthesis of silica: an example of a polylysine macromolecular ‘switch’. Biomacromolecules 7:491–497CrossRefPubMedPubMedCentralGoogle Scholar
  58. Patwardhan SV, Shiba K, Schröder HC, Müller WEG, Clarson SC, Perry CC (2007) The interaction of ‘silicon’ with proteins: part 2. The role of bioinspired peptides and recombinant proteins in silica polymerization ACS. Symp. Ser. 964:328–347Google Scholar
  59. Perry CC (2003) Silicification: the processes by which organisms capture and mineralize silica. Rev. Miner. and Geochem. (Dove PM, De Yoreo JJ, Weiner S, eds) 54:291–327CrossRefGoogle Scholar
  60. Perry CC, Fraser MA (1991) Silica deposition and ultrastructure in the cell wall of Equisetum arvense: the importance of cell wall structures and flow control in biosilicification? Phil. Trans. Roy. Soc. Lond. B 334:149–157CrossRefGoogle Scholar
  61. Perry CC, Keeling-Tucker T (1998) Crystalline silica prepared at room temperature from aqueous solution in the presence of intrasilica bioextracts. Chem. Commun. 2587–2588Google Scholar
  62. Perry CC, Keeling-Tucker T (2000) Biosilicification: the role of the organic matrix in structure control. J. Biol. Inorg. Chem. 5:537–550CrossRefPubMedPubMedCentralGoogle Scholar
  63. Perry CC, Keeling-Tucker T (2003) Model studies of colloidal silica precipitation using biosilica Extracts from Equisetum telmatia. Coll. Polym. Sci. 281:652–664CrossRefGoogle Scholar
  64. Perry CC, Lu Y (1992) Preparation of silicas from silicon complexes: role of cellulose in polymerisation and aggregation control. Farad. Trans. 88:2915–2921CrossRefGoogle Scholar
  65. Perry CC, Mann S, Williams RJP (1984) Structural and analytical studies of the silicified macrohairs from the lemma of the grass Phalaris canariensis L. Proc. Roy. Soc. Lond. B 222:427–438CrossRefGoogle Scholar
  66. Perry CC, Moss EJ, Williams RJP (1990) A staining agent for biological silica. Proc. Roy. Soc. Lond. B 241:47–50CrossRefGoogle Scholar
  67. Pisera A (2003) Some aspects of silica deposition in Lithistid demosponge desmas. Microsc. Res. Tech. 62:312–326CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rodrigues FA, Benhamou N, Datnoff LE, Jones JB, Bélanger RR (2003) Ultrastructural and cyto-chemical aspects of silicon-mediated rice blast resistance. Phytopathology 93:535–546CrossRefPubMedPubMedCentralGoogle Scholar
  69. Shian S, Cai Y, Weatherspoon MR, Allan SM, Sandhage KH (2006) Three-dimensional assemblies of zirconia nanocrystals via shape-preserving reactive conversion of diatom microshells. J. Am. Ceram. Soc. 89(2):694–698CrossRefGoogle Scholar
  70. Schröder HC, Krasko A, Batel R, Skorokhod A, Pahler S, Kruse M, Müller IM, Müller WEG (2000) Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin-related molecule from Suberites domuncula. FASEB J. 14:2022–2031CrossRefPubMedPubMedCentralGoogle Scholar
  71. Schröder HC, Krasko A, Le Pennec G, Adell T, Wiens M, Hassanein H, Müller IM, Müller WEG (2003) Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. Prog. Mol. Subcell. Biol. 33:250–268Google Scholar
  72. Schröder HC, Perovié-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller IM, Müller WEG (2004) Silicon transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem. J. 381:665–673CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schröder HC, Boreiko O, Krasko A, Reiber A, Schwertner H, Müller WEG (2005) Mineralization of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces J. Biomed. Mater. Res. Part B Appl. Biomater. 75B(2):387–392CrossRefGoogle Scholar
  74. Shröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, Müller IM, Müller WEG (2006) Co-expression and functional interaction of silicatein with galectin. J. Biol. Chem. 281(17):12001–12009CrossRefGoogle Scholar
  75. Schröder HC, Brandt D, Schlobmacher U, Wang X, Tahir MN, Tremel W, Belikov SI, Müller WEG (2007) Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine) Naturwissenschaften 94:339–359CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sewell SL, Wright DW (2006) Biomimetic synthesis of titanium dioxide utilizing the R5 peptide derived from Cylindrotheca fusiformis. Chem. Mater. 18(13):3108–3113CrossRefGoogle Scholar
  77. Shi Q, Bao Z, Zhu Z, He Y, Qian Q, Yu, J (2005) Silicon mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66:1551–1559CrossRefPubMedPubMedCentralGoogle Scholar
  78. Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein α: cathepsin L-like protein in sponge biosilica. Proc. Natl. Acad. Sci. USA 95:6234–6238CrossRefPubMedPubMedCentralGoogle Scholar
  79. Simpson TL (1984) The cell biology of sponges. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  80. Sumerel JL, Yang WJ, Kisailus D, Weaver JC, Choi JH, Morse DE (2003) Biocatylitically templated synthesis of titanium dioxide. Chem. Mater. 15(25):4804–4809CrossRefGoogle Scholar
  81. Sumper M, Kröger N (2004) Silica formation in diatoms: the function of long chain polyamines and silaffins. J. Mater. Chem. 14:2059–2065CrossRefGoogle Scholar
  82. Sumper M, Brunner E, Lehmann G (2005) Biomineralization in diatoms: characterisation of novel polyamines associated with silica. FEBS Lett. 579(17):3765–3769CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tahir MN, Theato P, Müller WEG, Schröder HC, Janshoff A, Zhang J, Huth J, Tremel W (2004) Monitoring the formation of biosilica catalysed by histidine-tagged silicatein. Chem. Commun. 24:2848–2849CrossRefGoogle Scholar
  84. Tahir MN, Theato P, Müller WEG, Schröder HC, Borejko A, Faiss S, Janshoff A, Huth J, Tremel W (2005) Formation of layered titania and zirconia catalysed by surface-bound silicatein. Chem. Commun. 44:5533–5535CrossRefGoogle Scholar
  85. Tahir MN, Eberhardt M, Therese HA, Kolb U, Theato P, Müller WEG, Schrüder HC, Tremel W (2006) From single molecules to nanoscopically structured functional materials: Au nanocrystal growth on TiO2 nanowires controlled by surface-bound silicatein. Angew. Chem. Int. Ed. 45(29):4803–4809CrossRefGoogle Scholar
  86. Tilburey GE, Patwardhan S V, Huang J, Kaplan DL, Perry CC (2007) ‘Are hydroxyl containing biomolecules important in (bio)silicification? A model study’. J. Phys. Chem. B 111(17) 4630–4638CrossRefPubMedPubMedCentralGoogle Scholar
  87. Tomczak MM, Glawe DD, Drummy LF, Lawrence CG, Stone MO, Perry CC, Pochan DJ, Deming TJ, Naik RR (2005) Polypeptide templated synthesis of hexagonal silica platelets. J. Am. Chem. Soc. 127:12577–12582CrossRefPubMedPubMedCentralGoogle Scholar
  88. Van der Meene AML, Pickett-Heaps JD (2002) Valve morphogenesis in the centric diatom Proboscia alalta Sundstrom. J. Phycol. 38:351–363CrossRefGoogle Scholar
  89. Van Hoest PJ (2006) Rice straw, the role of silica and treatments to improve quality. Anim. Feed Sci. Technol. 130:137–171CrossRefGoogle Scholar
  90. Vrieling EG, Beelen TPM, van Santen RA, Gieskes WWC (2002) Mesophases of (bio)polymer-silica particles inspire a model for silica biomineralization in diatoms. Angew. Chem. Int. Ed. 41:1543–1546CrossRefGoogle Scholar
  91. Wang L, Nie Q, Li M, Zhang F, Zhuang J, Yang W, Li T, Wang Y (2005) Biosilicified structures for cooling plant leaves: a mechanism of highly efficient midinfrared thermal emission. Appl. Phys. Lett. 87:194105CrossRefGoogle Scholar
  92. Weatherspoon MR, Haluska MS, Cai Y, King JS, Summers CJ, Snyder RL, Sandhage KH (2006) Phosphor microparticles of controlled three-dimensional shape from phytoplankton. J. Electrochem. Soc. 153(2):H34–H37CrossRefGoogle Scholar
  93. Wetherbee R, Crawford S, Mulvaney P (2000) The nanostructure and development of diatom biosilica. In: Bauerlein E (ed) Biomineralization, from Biology to Biotechnology and Medical Applications. Wiley VCH, Weinheim, Germany, pp189–206Google Scholar
  94. Yoshida S, Ohnishi Y, Kitagishi K (1962) Histochemistry of silicon in rice plant III. The presence of cuticle silica-double layer in the epidermal tissue. Soil Sci. Plant Nutr. 8:1–5Google Scholar
  95. Zhou Y, Shimizu K, Cha JN, Stucky GD, Morse DE (1999) Efficient catalysis of polysiloxane synthesis by silicatein α requires specific hydroxy and imidazole functionalities. Angew. Chem. Int. Ed.38:780–782CrossRefGoogle Scholar
  96. Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 167:527–533CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carole C. Perry
    • 1
  1. 1.School of Science and Technology, Nottingham Trent UniversityUK

Personalised recommendations