Modelling the Skeletal Architecture in a Sponge with Radiate Accretive Growth

  • Jaap A. Kaandorp
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 47)


A mathematical model of the skeletogenesis and the influence of the physical environment on the morphogenesis of a branching sponge, for example, Haliclona oculata or Lubomirskia baikalensis, is presented. In the model, we assume that the radiate accretive growth process is nutrient limited. With this model we can generate in a simulated accretive growth process branching objects with a similarity to the branching sponges.


Growth Form Silicic Acid Growth Function Sponge Tissue Skeletal Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E.R. Abraham. The fractal branching of an arborescent sponge. Mar. Biol.138, 503–510 (2001).CrossRefGoogle Scholar
  2. T. Adell, I. Nefkens, and W.E.G. Müller. Polarity factor ‘frizzled’ in the demosponge Suberites domuncula: identification, expression and localization of the receptor in the epithelium/pina-coderm. FEBS554, 363–368 (2003)CrossRefGoogle Scholar
  3. N. Boury-Esnault and K. Ruetzler, Thesaurus of sponge morphology. Smithson. Contr. Zool.596, 1–55 (1997)CrossRefGoogle Scholar
  4. J.S. Bowerbank. A monograph of the British Spongiadae VIII, London Royal Society, London, 1876Google Scholar
  5. E. Brener, K. Kassner, and H. Mueller-Krumbhaar. Pattern formation in first order phase transitions. Int. J. Modern Phys. C3, 825–851 (1992)CrossRefGoogle Scholar
  6. W.H. de Weerdt, A systematic revision of the north-eastern Atlantic shallow-water Haplosclerida (Porifera, Demospongiae), part (II): (C)halinidae, Beafortia 36, 81–165 (1986)Google Scholar
  7. J.A. Kaandorp and J.E. Kübler. The algorithmic beauty of seaweeds, sponges and corals. Springer-Verlag, Heidelberg, 2001CrossRefGoogle Scholar
  8. J.A. Kaandorp, P.M.A. Sloot, R.M.H. Merks, R.P.M. Bak, M.J.A. Vermeij, and C. Maier. Morphogenesis of the branching reef coral Madracis mirabilis. Proc. Roy. Soc. Lond. B272, 127–133, 2005CrossRefGoogle Scholar
  9. G. Le Pennec, et al. Cultivation of primmorphs from the marine sponge Suberites domuncula: morphogenetic potential of silicon and iron a review. J. Biotechnol.100, 93–108 (2003)CrossRefGoogle Scholar
  10. R.M.H. Merks, A.G. Hoekstra, J.A. Kaandorp, and P.M.A. Sloot. Branching and morphologic plasticity in corals: the polyp oriented approach. J. Theor. Biol.228, 559–576, 2004CrossRefGoogle Scholar
  11. W.E.G. Müller, et al. Molecular mechanism of spicule formation in the demosponge Suberites domuncula: silicatein – collagen- myotrophin. Prog. Mol. Subcell. Biol.33, 195–231 (2003)CrossRefGoogle Scholar
  12. W.E.G. Müller, et al. Bauplan of urmetazoa: basis for genetic complexity of metazoa. Int. Rev. Cytol.235, 53–92 (2004)CrossRefGoogle Scholar
  13. B. van Rietbergen et al. Tissue stresses and strain in trabeculae of a canine proximal femur. J. Biomech.32, 443–451 (1999)CrossRefGoogle Scholar
  14. C.J. Vosmaer On the distinction between the genera Axinella, Phakelia, Acantella a.o. Abdruck aus den Zoologischen Jahrbüchern, Verlag von Gustav Fischer, Jena, 1912Google Scholar
  15. F. Wiedenmayer. Shallow-water sponges of the western Bahamas. Birkhäuser, Basel, 1977CrossRefGoogle Scholar
  16. A.G. Wischmeyer et al. Theoretical constraints on the uptake of silicic acid species by marine diatoms. Mar. Chem.29, 13–29 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jaap A. Kaandorp
    • 1
  1. 1.Section Computational Science, Faculty of ScienceUniversity of AmsterdamSJ AmsterdamThe Netherlands

Personalised recommendations