Advertisement

Improvement of Accuracy of Marker-Free Bronchoscope Tracking Using Electromagnetic Tracker Based on Bronchial Branch Information

  • Kensaku Mori
  • Daisuke Deguchi
  • Takayuki Kitasaka
  • Yasuhito Suenaga
  • Yosihnori Hasegawa
  • Kazuyoshi Imaizumi
  • Hirotsugu Takabatake
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5242)

Abstract

This paper presents a study of tracking accuracy improvement of marker-free bronchoscope tracking using an electromagnetic tracking system. Bronchoscope tracking is an important function in a bronchoscope navigation system that assists a physician during bronchoscopic examination. Several research groups have presented a method for bronchoscope tracking using an ultra-tiny electromagnetic tracker (UEMT) that can be inserted into the working channel of a bronchoscope. In such a system, it is necessary to find the matrix T showing the relation between the coordinate systems of the CT image and the UEMT. This paper tries to improve the accuracy of this matrix by using not only the position information of the UEMT but also the orientation information. The proposed algorithm uses the running direction information of bronchial branches and the orientation information of the UEMT in the computation process of T. In the experiments using a bronchial phantom, the tracking accuracy was improved from 2.2 mm to 1.8 mm.

Keywords

Medial Line Registration Error World Coordinate System Virtual Bronchoscopic Electromagnetic Tracking System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Electronic Supplementary Material (25,330 KB)

References

  1. 1.
    Mori, K., Deguchi, D., Sugiyama, J., et al.: Tracking of a bronchoscope using epipolar geometry analysis and intensity-based image registration of real and virtual endoscopic images. Med. Img. Ana. 6, 321–336 (2002)CrossRefGoogle Scholar
  2. 2.
    Bricault, I., Ferretti, G., Cinquin, P.: Registration of Real and CT-Derived Virtual Bronchoscopic Images to Assist Transbronchial Biopsy. IEEE TMI 17(5), 703–714 (1998)Google Scholar
  3. 3.
    Wegner, K., Biederer, J., Tetzlaff, R., et al.: Evaluation and Extension of a Navigation System for Bronchoscopy inside Human Lungs. In: Proc. of SPIE, vol. 6509, pp. 65091H–1–12 (2007)Google Scholar
  4. 4.
    Deguchi, D., Ishitani, K., Kitasaka, T., et al.: A method for bronchoscope tracking using position sensor without fiducial markers. In: Proc, of SPIE, vol. 6511, pp. 65110N–1–12 (2007)Google Scholar
  5. 5.
    Mori, K., Deguchi, D., Akiyama, K., et al.: Hybrid Bronchoscope Tracking Using a Magnetic Tracking Sensor and Image Registration. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 543–550. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Kitasaka, T., Mori, K., Hasegawa, J., et al.: A Method for Extraction of Bronchus Regions from 3D Chest X-ray CT Images by Analyzing Structural Features of the Bronchus. In: FORMA, vol. 17(4), pp. 321–338 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Kensaku Mori
    • 1
    • 2
  • Daisuke Deguchi
    • 2
  • Takayuki Kitasaka
    • 2
    • 3
  • Yasuhito Suenaga
    • 1
    • 2
  • Yosihnori Hasegawa
    • 4
    • 2
  • Kazuyoshi Imaizumi
    • 4
  • Hirotsugu Takabatake
    • 5
  1. 1.Graduate School of Information ScienceNagoya UniversityNagoyaJapan
  2. 2.Innovative Research Center for Preventive Medical EngineeringNagoya UniversityJapan
  3. 3.Faculty of Management and Information ScienceAichi Institute of TechnologyJapan
  4. 4.Graduate School of MedicineNagoya UniversityJapan
  5. 5.Sapporo Minami-Sanjyo HospitalJapan

Personalised recommendations