Methylglyoxal synthase

Part of the Springer Handbook of Enzymes book series (HDBKENZYMES, volume S7)


Serratia Marcescens Triosephosphate Isomerase Clostridium Acetobutylicum Triose Phosphate Dihydroxyacetone Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hopper, D.J.; Cooper, R.A.: The regulation of Escherichia coli methylglyoxal synthase a new control site in glycolysis. FEBS Lett., 13, 213–216 (1971)CrossRefPubMedGoogle Scholar
  2. [2]
    Hopper, D.J.; Cooper, R.A.: The purification and properties of Escherichia coli methylglyoxal synthase. Biochem. J., 128, 321–329 (1972)PubMedGoogle Scholar
  3. [3]
    Cooper, R.A.: Methylglyoxal formation during glucose catabolism by Pseudomonas saccharophila. Identification of methylglyoxal synthase. Eur. J. Biochem., 44, 81–86 (1974)CrossRefPubMedGoogle Scholar
  4. [4]
    Cooper, R.A.: Methylglyoxal synthase. Methods Enzymol., 41B, 502–508 (1975)CrossRefGoogle Scholar
  5. [5]
    Tsai, P.K.; Gracy, R.W.: Isolation and characterization of crystalline methylglyoxal synthetase from Proteus vulgaris. J. Biol. Chem., 251, 364–367 (1976)PubMedGoogle Scholar
  6. [6]
    Yuan, P.M.; Gracy, R.W.; Hartman, F.C.: Haloacetol phosphates as affinity labels for methylglyoxal synthase. Biochem. Biophys. Res. Commun., 74, 1007–1013 (1977)CrossRefPubMedGoogle Scholar
  7. [7]
    Summers, M.C.; Rose, I.A.: Proton transfer reactions of methylglyoxal synthase. J. Am. Chem. Soc., 99, 4475–4478 (1977)CrossRefPubMedGoogle Scholar
  8. [8]
    Yuan, P.M.; Gracy, R.W.: The conversion of dihydroxyacetone phosphate to methylglyoxal and inorganic phosphate by methylglyoxal synthase. Arch. Biochem. Biophys., 183, 1–6 (1977)CrossRefPubMedGoogle Scholar
  9. [9]
    Ray, S.; Ray, M.: Isolation of methylglyoxal synthase from goat liver. J. Biol. Chem., 256, 6230–6233 (1981)PubMedGoogle Scholar
  10. [10]
    Smits, M.M.; Johnson, M.A.: Methylglyoxal: enzyme distributions relative to its presence in Douglas-fir needles and absence in Douglas-fir needle callus. Arch. Biochem. Biophys., 208, 431–439 (1981)CrossRefPubMedGoogle Scholar
  11. [11]
    Iyengar, R.; Rose, I.A.: Methylglyoxal synthase uses the trans isomer or triose-1,2-enediol 3-phosphate. J. Am. Chem. Soc., 105, 3301–3303 (1983)CrossRefGoogle Scholar
  12. [12]
    Tran-Din, K.; Gottschalk, G.: Formation of D(−)-1,2-propanediol and D(−)-lactate from glucose by Clostridium sphenoides under phosphate limitation. Arch. Microbiol., 142, 87–92 (1985)CrossRefGoogle Scholar
  13. [13]
    Murata, K.; Fukuda, Y.; Watanabe, K.; Saikusa, T.; Shimosaka, M.; Kimura, A.: Characterization of methylglyoxal synthase in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun., 131, 190–198 (1985)CrossRefPubMedGoogle Scholar
  14. [14]
    Ferguson, G.P.; Tçtemeyer, S.; MacLean, M.J.; Booth, I.R.: Methylglyoxal production in bacteria: suicide or survival. Arch. Microbiol., 170, 209–219 (1998)CrossRefPubMedGoogle Scholar
  15. [15]
    Baskaran, S.; Rajan, D.P.; Balasubramanian, K.A.: Formation of methylglyoxal by bacteria isolated from human faeces. J. Med. Microbiol., 28, 211–215 (1989)CrossRefPubMedGoogle Scholar
  16. [16]
    Huang, K.X.; Rudolph, F.B.; Bennett, G.N.: Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1,2-propanediol. Appl. Environ. Microbiol., 65, 3244–3247 (1999)PubMedGoogle Scholar
  17. [17]
    Saadat, D.; Harrison, D.H.T.: Identification of catalytic bases in the active site of Escherichia coli methylglyoxal synthase: cloning, expression, and functional characterization of conserved aspartic acid residues. Biochemistry, 37, 10074–10086 (1998)CrossRefPubMedGoogle Scholar
  18. [18]
    Altaras, N.E.; Cameron, D.C.: Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol., 65, 1180–1185 (1999)PubMedGoogle Scholar
  19. [19]
    Tçtemeyer, S.; Booth, N.A.; Nichols, W.W.; Dunbar, B.; Booth, I.R.: From famine to feast: the role of methylglyoxal production in Escherichia coli. Mol. Microbiol., 27, 553–562 (1998)CrossRefGoogle Scholar
  20. [20]
    Saadat, D., Harrison, D.H.: Mirroring perfection: the structure of methylglyoxal synthase complexed with the competitive inhibitor 2-phosphoglycolate. Biochemistry, 39, 2950–2960 (2000)CrossRefPubMedGoogle Scholar
  21. [21]
    Marks, G.T., Harris, T.K., Massiah, M.A., Mildvan, A.S., Harrison, D.H.: Mechanistic implications of methylglyoxal synthase complexed with phosphoglycolohydroxamic acid as observed by X-ray crystallography and NMR spectroscopy. Biochemistry, 40, 6805–6818 (2001)CrossRefPubMedGoogle Scholar
  22. [22]
    Marks, G.T., Susler, M., Harrison, D.H.: Mutagenic studies on histidine 98 of methylglyoxal synthase: effects on mechanism and conformational change. Biochemistry, 43, 3802–3813 (2004)CrossRefPubMedGoogle Scholar
  23. [23]
    Rose, I.A., Nowick, J.S.: Methylglyoxal synthetase, enol-pyruvaldehyde, glutathione and the glyoxylase system. J. Am. Chem. Soc., 124, 13047–13052 (2002)CrossRefPubMedGoogle Scholar
  24. [24]
    Zhang, X., Harrison, D.H., Cui, Q.: Functional specificities of methylglyoxal synthase and triosephosphate isomerase: a combined QM/MM analysis. J. Am. Chem. Soc., 124, 14871–14878 (2002)CrossRefPubMedGoogle Scholar
  25. [25]
    Saadat, D., Harrison, D.H.: The crystal structure of methylglyoxal synthase from Escherichia coli. Structure Fold. Des., 7, 309–317 (1999)CrossRefPubMedGoogle Scholar
  26. [26]
    Kim, I.; Kim, E.; Yoo, S.; Shin, D.; Min, B.; Song, J.; Park, C.: Ribose utilization with an excess of mutarotase causes cell death due to accumulation of methylglyoxal. J. Bacteriol., 186, 7229–7235 (2004)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Personalised recommendations